ON THE CURVATURE OF THE FEFFERMAN METRIC OF CONTACT RIEMANNIAN MANIFOLDS

被引:2
|
作者
Nagase, Masayoshi [1 ]
机构
[1] Saitama Univ, Grad Sch Sci & Engn, Dept Math, Saitama, Saitama 3388570, Japan
关键词
Fefferman metric; scalar curvature; contact Riemannian structure; hermitian Tanno connection;
D O I
10.2748/tmj/1568772179
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is known that a contact Riemannian manifold carries a generalized Fefferman metric on a circle bundle over the manifold. We compute the curvature of the metric explicitly in terms of a modified Tanno connection on the underlying manifold. In particular, we show that the scalar curvature descends to the pseudohermitian scalar curvature multiplied by a certain constant. This is an answer to a problem considered by Blair-Dragomir.
引用
收藏
页码:425 / 436
页数:12
相关论文
共 50 条