Application of Fuzzy C-Means Algorithm in Complex Background Image Segmentation of Forensic Science

被引:1
|
作者
Chen, Zhuang [1 ]
Li, ChunYu [1 ]
Jiang, ZhanQing [1 ]
Zhao, Yongqiang [1 ]
机构
[1] Univ China PPSUC, Peoples Publ Secur, Forens Image Technol Direct, 1 South Muxidi Lane, Beijing Xicheng Dist, Peoples R China
关键词
Image segmentation; Fuzzy C-Means; Forensic science; Stamp impression; Complex background;
D O I
10.1007/978-981-13-6508-9_27
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the field of forensic science, image segmentation is required as a basic and significant stage in forensic image analysis. It is very important to segment the stamp impression image with a complex background precisely. This paper puts forward a feasible and efficient approach for complex background stamp impression image segmentation based on Fuzzy C-Means (FCM) algorithm. The fuzzy feature of forensic image can be handled efficiently using Fuzzy C-Means (FCM) algorithm in the forensic science field. The results of the experiments demonstrate the validity and accuracy of Fuzzy C-Means (FCM) algorithm.
引用
收藏
页码:212 / 217
页数:6
相关论文
共 50 条
  • [1] Application of Fuzzy C-means clustering algorithm in image segmentation
    Guo, Rongchuan
    PROCEEDINGS OF THE 2016 4TH INTERNATIONAL CONFERENCE ON ELECTRICAL & ELECTRONICS ENGINEERING AND COMPUTER SCIENCE (ICEEECS 2016), 2016, 50 : 84 - 88
  • [2] A Spatial Fuzzy C-means Algorithm with Application to MRI Image Segmentation
    Adhikari, Sudip Kumar
    Sing, Jamuna Kanta
    Basu, Dipak Kumar
    Nasipuri, Mita
    2015 EIGHTH INTERNATIONAL CONFERENCE ON ADVANCES IN PATTERN RECOGNITION (ICAPR), 2015, : 175 - 180
  • [3] Application of improved fuzzy c-means algorithm to texture image segmentation
    Hou, Yanli
    Information Technology Journal, 2013, 12 (21) : 6379 - 6384
  • [4] Hesitant fuzzy C-means algorithm and its application in image segmentation
    Zeng, Wenyi
    Ma, Rong
    Yin, Qian
    Zheng, Xin
    Xu, Zeshui
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2020, 39 (03) : 3681 - 3695
  • [5] An automatic fuzzy c-means algorithm for image segmentation
    Yan-ling Li
    Yi Shen
    Soft Computing, 2010, 14 : 123 - 128
  • [6] An automatic fuzzy c-means algorithm for image segmentation
    Li, Yan-ling
    Shen, Yi
    SOFT COMPUTING, 2010, 14 (02) : 123 - 128
  • [7] Pythagorean fuzzy C-means algorithm for image segmentation
    Ma, Rong
    Zeng, Wenyi
    Song, Guangcheng
    Yin, Qian
    Xu, Zeshui
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2021, 36 (03) : 1223 - 1243
  • [8] A novel kernelized fuzzy C-means algorithm with application in medical image segmentation
    Zhang, DQ
    Chen, SC
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2004, 32 (01) : 37 - 50
  • [9] Modified Fast Fuzzy C-means Algorithm For Image Segmentation
    Guo, Rong-chuan
    Ye, Shui-sheng
    Quan, Min
    Shi, Hai-xia
    PROCEEDINGS OF THE SECOND INTERNATIONAL SYMPOSIUM ON ELECTRONIC COMMERCE AND SECURITY, VOL II, 2009, : 39 - 43
  • [10] PSO based Fuzzy C-Means algorithm for image segmentation
    Li, Yanling
    Shen, Yi
    Journal of Computational Information Systems, 2008, 4 (05): : 1885 - 1890