Fully flexible lithium ion battery based on a flame retardant, solid-state polymer electrolyte membrane

被引:23
|
作者
Fu, Guopeng [1 ]
Soucek, Mark D. [1 ]
Kyu, Thein [1 ]
机构
[1] Univ Akron, Dept Polymer Engn, Akron, OH 44325 USA
基金
美国国家科学基金会;
关键词
ELECTROCHEMICAL STABILITY; POLY(ETHYLENE OXIDE); LITFSI ELECTROLYTES; CONDUCTIVITY; ELECTRONICS; FILMS; ENHANCEMENT; MIXTURES;
D O I
10.1016/j.ssi.2018.03.021
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The safety issue of a portable battery has increasingly become paramount important because of intimate contact of wearable devices with the human body. In this study, a flame retardant, thermally stable polymer electrolyte membrane (PEM) has been fabricated based on crosslinkable polyurethane precursor, viz., polyethylene glycolbis-carbamate dimethacrylate (PEGBCDMA). This PEGBCDMA based PEM is solvent-free, transparent, bendable, and twistable, which makes it an ideal candidate for a fully flexible battery application with safety attributes. Moreover, the above PEM exhibits high ionic conductivity close to the superionic level (8 x 10(-4) S CM-1 at room temperature) and electrochemical stability in a large operating window of -0.5 V to 4.5 V. The PEM shows over 80% of specific capacity retention up to 250 cycles tested in the lithium iron phosphate (LiFePO4)/PEM/graphite full cells. Of particular importance is that the present PEGBCDMA based PEM has met most of the application criteria for a flexible solid-state lithium ion battery.
引用
收藏
页码:310 / 315
页数:6
相关论文
共 50 条
  • [1] THE CHARACTERISTIC OF POLYANILINE POLYMER ELECTROLYTE IN SOLID-STATE LITHIUM BATTERY
    YANG, LS
    SHAN, ZQ
    LIU, YD
    SOLID STATE IONICS, 1990, 40-1 : 967 - 969
  • [2] Polymer Electrolyte/Anode Interface in Solid-State Lithium Battery
    Chen, Long
    Huang, Shaobo
    Qiu, Jingyi
    Zhang, Hao
    Cao, Gaoping
    PROGRESS IN CHEMISTRY, 2021, 33 (08) : 1378 - 1389
  • [3] High ionic conductivity of a flexible solid-state composite electrolyte for a lithium-ion battery
    Song, Yu-Huei
    Chen, Yu-Ching
    Lin, En-Ci
    Liang, Tzu Yun
    Wu, Che Ya
    Wang, Ai-Yin
    Chen, Han-Yi
    Wu, Jyh Ming
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (39) : 26809 - 26819
  • [4] Flexible and hyper ion-conductive LATP-embedded semi-interpenetrating polymer network electrolyte membrane for solid-state lithium battery
    Cho, Yeonju
    Mong, Anh Le
    Hoang, Hai Anh
    Kim, Dukjoon
    JOURNAL OF ENERGY STORAGE, 2024, 92
  • [5] Ultrathin, flexible, and sandwiched structure composite polymer electrolyte membrane for solid-state lithium batteries
    Li, Boyu
    Su, Qingmei
    Yu, Lintao
    Dong, Shijia
    Zhang, Miao
    Ding, Shukai
    Du, Gaohui
    Xu, Bingshe
    JOURNAL OF MEMBRANE SCIENCE, 2021, 618
  • [6] A durable and safe solid-state lithium battery with a hybrid electrolyte membrane
    Zhang, Wenqiang
    Nie, Jinhui
    Li, Fan
    Wang, Zhong Lin
    Sun, Chunwen
    NANO ENERGY, 2018, 45 : 413 - 419
  • [7] Toward high performance solid-state lithium-ion battery with a promisingPEO/PPCblend solid polymer electrolyte
    Zhu, Lin
    Li, Jialun
    Jia, Yufei
    Zhu, Penghui
    Jing, Maoxiang
    Yao, Shanshan
    Shen, Xiangqian
    Li, Songjun
    Tu, Feiyue
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2020, 44 (13) : 10168 - 10178
  • [8] Tailored PEO/PEG-PPG Polymer Electrolyte for Solid-State Lithium-Ion Battery
    Helaley, Ahmad
    Zhan, Guodong
    Liang, Xinhua
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2024, 171 (11)
  • [9] Reinforced flexible solid-state electrolyte membrane by polyurethane polymer of intrinsic microporosity for high-energy-density lithium metal battery
    Hu, Xiaoyan
    Zhang, Baoquan
    JOURNAL OF MEMBRANE SCIENCE, 2024, 701
  • [10] Inherently flame-retardant solid polymer electrolyte for safety-enhanced lithium metal battery
    Li, Hongping
    Yang, Jun
    Chen, Suli
    Xu, Zhixin
    Wang, Jiulin
    Nuli, Yanna
    Guo, Yongsheng
    Liang, Chengdu
    CHEMICAL ENGINEERING JOURNAL, 2021, 410