All-optical band engineering of gapped Dirac materials

被引:76
|
作者
Kibis, O. V. [1 ,2 ,3 ]
Dini, K. [2 ]
Iorsh, I. V. [3 ,4 ]
Shelykh, I. A. [2 ,4 ]
机构
[1] Novosibirsk State Tech Univ, Dept Appl & Theoret Phys, Karl Marx Ave 20, Novosibirsk 630073, Russia
[2] Univ Iceland, Inst Sci, Dunhagi 3, IS-107 Reykjavik, Iceland
[3] Nanyang Technol Univ, Div Phys & Appl Phys, Singapore 637371, Singapore
[4] ITMO Univ, St Petersburg 197101, Russia
关键词
ELECTRONIC TRANSPORT; MONOLAYER WS2; GRAPHENE;
D O I
10.1103/PhysRevB.95.125401
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We demonstrate theoretically that the interaction of electrons in gapped Dirac materials (gapped graphene and transition-metal dichalchogenide monolayers) with a strong off-resonant electromagnetic field (dressing field) substantially renormalizes the band gaps and the spin-orbit splitting. Moreover, the renormalized electronic parameters drastically depend on the field polarization. Namely, a linearly polarized dressing field always decreases the band gap (and, particularly, can turn the gap into zero), whereas a circularly polarized field breaks the equivalence of valleys in different points of the Brillouin zone and can both increase and decrease corresponding band gaps. As a consequence, the dressing field can serve as an effective tool to control spin and valley properties of the materials and be potentially exploited in optoelectronic applications.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] All-optical transistor action in photonic band gap materials
    Florescu, M
    John, S
    APPLICATIONS OF PHOTONIC TECHNOLOGY 5: CLOSING THE GAP BETWEEN THEORY, DEVELOPMENT, AND APPLICATION, 2002, 4833 : 513 - 524
  • [2] Anomalous ultrafast all-optical Hall effect in gapped graphene
    Motlagh, S. Azar Oliaei
    Apalkov, Vadym
    NANOPHOTONICS, 2021, 10 (14) : 3677 - 3685
  • [3] Magneto-optical probe of the fully gapped Dirac band in ZrSiS
    Uykur, E.
    Maulana, L. Z.
    Schoop, L. M.
    Lotsch, B., V
    Dressel, M.
    Pronin, A., V
    PHYSICAL REVIEW RESEARCH, 2019, 1 (03):
  • [4] MATERIALS FOR ALL-OPTICAL DEVICES
    SMITH, PWE
    BENJAMIN, SD
    OPTICAL ENGINEERING, 1995, 34 (01) : 189 - 194
  • [5] Engineering Single-Shot All-Optical Switching of Ferromagnetic Materials
    Igarashi, Junta
    Remy, Quentin
    Iihama, Satoshi
    Malinowski, Gregory
    Hehn, Michel
    Gorchon, Jon
    Hohlfeld, Julius
    Fukami, Shunsuke
    Ohno, Hideo
    Mangin, Stephane
    NANO LETTERS, 2020, 20 (12) : 8654 - 8660
  • [6] Engineering the temporal dynamics of all-optical switching with fast and slow materials
    Soham Saha
    Benjamin T. Diroll
    Mustafa Goksu Ozlu
    Sarah N. Chowdhury
    Samuel Peana
    Zhaxylyk Kudyshev
    Richard D. Schaller
    Zubin Jacob
    Vladimir M. Shalaev
    Alexander V. Kildishev
    Alexandra Boltasseva
    Nature Communications, 14
  • [7] MOLECULAR ENGINEERING AND THE ALL-OPTICAL COMPUTER
    ALLEN, S
    MURRAY, RT
    PHYSICA SCRIPTA, 1988, T23 : 275 - 280
  • [8] All-Optical Reconstruction of Crystal Band Structure
    Vampa, G.
    Hammond, T. J.
    Thire, N.
    Schmidt, B. E.
    Legare, F.
    McDonald, C. R.
    Brabec, T.
    Klug, D. D.
    Corkum, P. B.
    PHYSICAL REVIEW LETTERS, 2015, 115 (19)
  • [9] Band engineering of Dirac materials in SbmBin lateral heterostructures
    Liu, Yonghui
    RSC ADVANCES, 2021, 11 (28) : 17445 - 17455
  • [10] Topological Valley Currents in Gapped Dirac Materials
    Lensky, Yuri D.
    Song, Justin C. W.
    Samutpraphoot, Polnop
    Levitov, Leonid S.
    PHYSICAL REVIEW LETTERS, 2015, 114 (25)