On convergence to infinity

被引:16
|
作者
Beer, G [1 ]
机构
[1] Calif State Univ Los Angeles, Dept Math, Los Angeles, CA 90032 USA
来源
MONATSHEFTE FUR MATHEMATIK | 2000年 / 129卷 / 04期
关键词
convergence to infinity; one-point extension; bounded set; forcing function; metric space; pseudo-compactness;
D O I
10.1007/s006050050075
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By a metric mode of convergence to infinity in a regular Hausdorff space X, we mean a sequence [F-k] Of closed subsets of X with Fk+1 subset of int F-k and boolean AND(k=1)(infinity) F-k = /, and a sequence (or net) [x(n)] in X is convergent to infinity with respect to [F-k] provided for each k, F-k contains x(n) eventually. Module a natural equivalence relation, these correspond to one-point extensions of the space with a countable base at the ideal point, and in the metrizable setting, they correspond to metric boundedness structures for the space. In this article, we study the interplay between these objects and certain continuous functions that may determine the metric mode of convergence to infinity, called forcing functions. Falling out of our results is a simple proof that each noncompact metrizable space admits uncountably many distinct metric uniformities.
引用
收藏
页码:267 / 280
页数:14
相关论文
共 50 条
  • [1] On Convergence to Infinity
    Gerald Beer
    Monatshefte für Mathematik, 2000, 129 : 267 - 280
  • [2] Convergence to infinity for orthonormal spline series
    G. G. Gevorkyan
    K. A. Keryan
    M. P. Poghosyan
    Acta Mathematica Hungarica, 2020, 162 : 604 - 617
  • [3] UNIFORM-CONVERGENCE ON (0,INFINITY)
    DIXON, M
    AMERICAN MATHEMATICAL MONTHLY, 1981, 88 (03): : 209 - 210
  • [4] On the convergence of positive increasing functions to infinity
    V. V. Buldygin
    O. I. Klesov
    J. G. Steinebach
    Ukrainian Mathematical Journal, 2011, 62 : 1507 - 1518
  • [5] CONVERGENCE TO INFINITY FOR ORTHONORMAL SPLINE SERIES
    Gevorkyan, G. G.
    Keryan, K. A.
    Poghosyan, M. P.
    ACTA MATHEMATICA HUNGARICA, 2020, 162 (02) : 604 - 617
  • [6] ON THE CONVERGENCE OF POSITIVE INCREASING FUNCTIONS TO INFINITY
    Buldygin, V. V.
    Klesov, O. I.
    Steinebach, J. G.
    UKRAINIAN MATHEMATICAL JOURNAL, 2011, 62 (10) : 1507 - 1518
  • [7] ON CONVERGENCE TO + INFINITY IN LAW OF LARGE NUMBERS
    BAUM, LE
    ANNALS OF MATHEMATICAL STATISTICS, 1963, 34 (01): : 219 - &
  • [8] CONVERGENCE TO INFINITY OF A SEQUENCE OF CONTINUOUS FUNCTIONS
    LIPINSKI, J
    DOKLADY AKADEMII NAUK SSSR, 1961, 140 (04): : 752 - &
  • [9] CONVERGENCE OF LP NORM TO L INFINITY NORM
    HANDELSMAN, RA
    LEW, JS
    AMERICAN MATHEMATICAL MONTHLY, 1972, 79 (06): : 618 - +
  • [10] Descending from infinity: Convergence of tailed distributions
    Van den Broeck, Christian
    Harbola, Upendra
    Toral, Raul
    Lindenberg, Katja
    PHYSICAL REVIEW E, 2015, 91 (01):