An alpha to beta conformational switch in EF-Tu

被引:178
作者
Abel, K
Yoder, MD
Hilgenfeld, R
Jurnak, F
机构
[1] UNIV CALIF RIVERSIDE, DEPT BIOCHEM, RIVERSIDE, CA 92521 USA
[2] UNIV MISSOURI, DIV CELL BIOL & BIOPHYS, SCH BIOL SCI, KANSAS CITY, MO 64110 USA
[3] INST MOL BIOTECHNOL, DEPT STRUCT BIOL & CRYSTALLOG, D-07708 JENA, GERMANY
关键词
alpha to beta conformational switch; EF-Tu-GDP; EF-Tu-GTP; elongation factor structure;
D O I
10.1016/S0969-2126(96)00123-2
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background: The bacterial elongation factor EF-Tu recognizes and transports aminoacyl-tRNAs to mRNA-programmed ribosomes. EF-Tu shares many structural and functional properties with other GTPases whose conformations are regulated by guanine nucleotides. Results: An intact form of Escherichia coli EF-Tu complexed with GDP has been crystallized in the presence of the EF-Tu-specific antibiotic GE2270 A, The three-dimensional structure has been solved by X-ray diffraction analysis and refined to a final crystallographic R factor of 17.2% at a resolution of 2.5 Angstrom. The location of the GE2270 A antibiotic-binding site could not be identified. Conclusions: The structure of EF-Tu-GDP is nearly identical to that of a trypsin-modified form of EF-Tu-GDP, demonstrating conclusively that the protease treatment had not altered any essential structural features. The present structure represents the first view of an ordered Switch I region in EF-Tu-GDP and reveals similarities with two other GTPases complexed with GDP: Ran and ADP-ribosylation factor-1, A comparison of the Switch I regions of the GTP and GDP forms of EF-Tu also reveals that a segment, six amino acids in length, completely converts from an a helix in the GTP complex to beta secondary structure in the GDP form. The alpha to beta switch in EF-Tu may represent a prototypical activation mechanism for other protein families.
引用
收藏
页码:1153 / 1159
页数:7
相关论文
共 29 条
[1]   A complex profile of protein elongation: Translating chemical energy into molecular movement [J].
Abel, K ;
Jurnak, F .
STRUCTURE, 1996, 4 (03) :229-238
[2]  
AMOR JC, 1994, NATURE, V372, P704, DOI 10.1038/372704a0
[3]   CRYSTAL-STRUCTURE OF ACTIVE ELONGATION-FACTOR TU REVEALS MAJOR DOMAIN REARRANGEMENTS [J].
BERCHTOLD, H ;
RESHETNIKOVA, L ;
REISER, COA ;
SCHIRMER, NK ;
SPRINZL, M ;
HILGENFELD, R .
NATURE, 1993, 365 (6442) :126-132
[4]   PROTEIN DATA BANK - COMPUTER-BASED ARCHIVAL FILE FOR MACROMOLECULAR STRUCTURES [J].
BERNSTEIN, FC ;
KOETZLE, TF ;
WILLIAMS, GJB ;
MEYER, EF ;
BRICE, MD ;
RODGERS, JR ;
KENNARD, O ;
SHIMANOUCHI, T ;
TASUMI, M .
JOURNAL OF MOLECULAR BIOLOGY, 1977, 112 (03) :535-542
[5]  
BOURNE HR, 1991, NATURE, V349, P117, DOI 10.1038/349117a0
[6]  
BRUNGER AT, 1992, XPLOR VERSION 3 1 SY
[7]   3-DIMENSIONAL STRUCTURE OF AN ONCOGENE PROTEIN - CATALYTIC DOMAIN OF HUMAN C-H-RAS P21 [J].
DEVOS, AM ;
TONG, L ;
MILBURN, MV ;
MATIAS, PM ;
JANCARIK, J ;
NOGUCHI, S ;
NISHIMURA, S ;
MIURA, K ;
OHTSUKA, E ;
KIM, SH .
SCIENCE, 1988, 239 (4842) :888-893
[8]  
*GEN COMP GROUP, 1994, PROGR MAN WISC PACK
[9]   THE STRUCTURE OF RAT ADP-RIBOSYLATION-FACTOR-I (ARF-1) COMPLEXED TO GDP DETERMINED FROM 2 DIFFERENT CRYSTAL FORMS [J].
GREASLEY, SE ;
JHOTI, H ;
TEAHAN, C ;
SOLARI, R ;
FENSOME, A ;
THOMAS, GMH ;
COCKCROFT, S ;
BAX, B .
NATURE STRUCTURAL BIOLOGY, 1995, 2 (09) :797-806
[10]  
HAMLIN R, 1985, METHOD ENZYMOL, V114, P416