Performance evaluation of clustering algorithms on microcalcifications as mammography findings

被引:0
|
作者
Ikonomakis, Emmanouil K. [1 ]
Spyrou, George M. [2 ]
Ligomenides, Panos A. [2 ]
Vrahatis, Michael N. [1 ]
机构
[1] Univ Patras, Dept Math, Computat Intelligence Lab CILab, GR-26110 Patras, Greece
[2] Acad Athens, Biomed Res Fdn, Biomed Informat Unit, Athens 11527, Greece
关键词
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Breast cancer can be prevented with regular mammography screening. Yet, the incorporation of Computational Intelligence relies on training classifiers on a set of predefined Regions of Interest (ROIs). Data Clustering has been applied to address the problem of ROI detection, yet no extensive research has been carried out on which algorithm to utilize. This contribution focuses on microcalcification clustering as a Data Clustering application, giving insights concerning the performance of three main clustering algorithms.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Clustering of breast microcalcifications on digital mammography: Which parameters?
    Mesurolle, B
    Ariche-Cohen, M
    Mignon, F
    Goumot, PA
    CLINICAL RADIOLOGY, 2002, 57 (01) : 75 - 75
  • [2] Digital mammography: An evaluation of the shape of microcalcifications
    Freedman, M
    Artz, DS
    Jafroudi, H
    Hogge, J
    Zuurbier, RA
    Katial, R
    Green, C
    Mun, SK
    PHYSICS OF MEDICAL IMAGING: MEDICAL IMAGING 1996, 1996, 2708 : 626 - 632
  • [3] Performance Evaluation of Clustering Algorithms on GPUs
    Morales-Garcia, Juan
    Llanes, Antonio
    Imbernon, Baldomero
    Cecilia, Jose M.
    INTELLIGENT ENVIRONMENTS 2020, 2020, 28 : 400 - 409
  • [4] Uncertainty evaluation in a fuzzy classifier for microcalcifications in digital mammography
    Ferrero, Alessandro
    Salicone, Simona
    Mencattini, Arianna
    Rabottino, Giulia
    Salmeri, Marcello
    2010 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE I2MTC 2010, PROCEEDINGS, 2010,
  • [5] Deep learning performance for detection and classification of microcalcifications on mammography
    Pesapane, Filippo
    Trentin, Chiara
    Ferrari, Federica
    Signorelli, Giulia
    Tantrige, Priyan
    Montesano, Marta
    Cicala, Crispino
    Virgoli, Roberto
    D'Acquisto, Silvia
    Nicosia, Luca
    Origgi, Daniela
    Cassano, Enrico
    EUROPEAN RADIOLOGY EXPERIMENTAL, 2023, 7 (01)
  • [6] Deep learning performance for detection and classification of microcalcifications on mammography
    Filippo Pesapane
    Chiara Trentin
    Federica Ferrari
    Giulia Signorelli
    Priyan Tantrige
    Marta Montesano
    Crispino Cicala
    Roberto Virgoli
    Silvia D’Acquisto
    Luca Nicosia
    Daniela Origgi
    Enrico Cassano
    European Radiology Experimental, 7
  • [7] Performance Evaluation of Features and Clustering Algorithms for Malware
    Faridi, Houtan
    Srinivasagopalan, Srivathsan
    Verma, Rakesh
    2018 18TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW), 2018, : 13 - 22
  • [8] Image segmentation by fuzzy and possibilistic clustering algorithms for the identification of microcalcifications
    Quintanilla-Dominguez, J.
    Ojeda-Magana, B.
    Cortina-Januchs, M. G.
    Ruelas, R.
    Vega-Corona, A.
    Andina, D.
    SCIENTIA IRANICA, 2011, 18 (03) : 580 - 589
  • [9] Ultrasound of mammography detected microcalcifications
    Buljevic, V.
    Tadic, T.
    Ilic, N.
    Stemberger, S.
    Kuzmic-Prusac, I.
    EJC SUPPLEMENTS, 2010, 8 (03): : 175 - 175
  • [10] Performance evaluation of some clustering algorithms and validity indices
    Maulik, U
    Bandyopadhyay, S
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2002, 24 (12) : 1650 - 1654