Simulating Large-Scale 3D Cadastral Dataset Using Procedural Modelling

被引:8
|
作者
Tekavec, Jernej [1 ]
Lisec, Anka [1 ]
Rodrigues, Eugenio [2 ]
机构
[1] Univ Ljubljana, Fac Civil & Geodet Engn, Dept Geodesy, Jamova Cesta 2, SI-1000 Ljubljana, Slovenia
[2] Univ Coimbra, Dept Mech Engn, ADAI, Rua Luis Reis Santos,Polo 2, P-3030788 Coimbra, Portugal
关键词
building models; 3D cadastral system; procedural modelling; SQL; 3D visualisation; LEGAL; VALIDATION; VICTORIA;
D O I
10.3390/ijgi9100598
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Geospatial data and information within contemporary land administration systems are fundamental to manage the territory adequately. 3D land administration systems, often addressed as 3D cadastre, promise several benefits, particularly in managing today's complex built environment, but these are currently still non-existent in their full capacity. The development of any complex information and administration system, such as a land administration system, is time-consuming and costly, particularly during the phase of evaluation and testing. In this regard, the process of implementing such systems may benefit from using synthetic data. In this study, the method for simulating the 3D cadastral dataset is presented and discussed. The dataset is generated using a procedural modelling method, referenced to real cadastral data for the Slovenian territory and stored in a spatial database management system (DBMS) that supports storage of 3D spatial data. Spatial queries, related to 3D cadastral data management, are used to evaluate the database performance and storage characteristics, and 3D visualisation options. The results of the study show that the method is feasible for the simulation of large-scale 3D cadastral datasets. Using the developed spatial queries and their performance analysis, we demonstrate the importance of the simulated dataset for developing efficient 3D cadastral data management processes.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] A Large-Scale 3D Object Recognition dataset
    Solund, Thomas
    Buch, Anders Glent
    Kruger, Norbert
    Aanaes, Henrik
    PROCEEDINGS OF 2016 FOURTH INTERNATIONAL CONFERENCE ON 3D VISION (3DV), 2016, : 73 - 82
  • [2] 3D Object Detection on large-scale dataset
    Zhao, Yan
    Zhu, Jihong
    Liang, Haoyu
    Chen, Lyujie
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [3] Large-scale multiview 3D hand pose dataset
    Gomez-Donoso, Francisco
    Orts-Escolano, Sergio
    Cazorla, Miguel
    IMAGE AND VISION COMPUTING, 2019, 81 : 25 - 33
  • [4] OASIS: A Large-Scale Dataset for Single Image 3D in the Wild
    Chen, Weifeng
    Qian, Shengyi
    Fan, David
    Kojima, Noriyuki
    Hamilton, Max
    Deng, Jia
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 676 - 685
  • [5] MedShapeNet - a large-scale dataset of 3D medical shapes for computer vision
    Li, Jianning
    Zhou, Zongwei
    Yang, Jiancheng
    Pepe, Antonio
    Gsaxner, Christina
    Luijten, Gijs
    Qu, Chongyu
    Zhang, Tiezheng
    Chen, Xiaoxi
    Li, Wenxuan
    Wodzinski, Marek
    Friedrich, Paul
    Xie, Kangxian
    Jin, Yuan
    Ambigapathy, Narmada
    Nasca, Enrico
    Solak, Naida
    Melito, Gian Marco
    Viet Duc Vu
    Memon, Afaque R.
    Schlachta, Christopher
    De Ribaupierre, Sandrine
    Patel, Rajnikant
    Eagleson, Roy
    Chen, Xiaojun
    Maechler, Heinrich
    Kirschke, Jan Stefan
    de la Rosa, Ezequiel
    Christ, Patrick Ferdinand
    Li, Hongwei Bran
    Ellis, David G.
    Aizenberg, Michele R.
    Gatidis, Sergios
    Kuestner, Thomas
    Shusharina, Nadya
    Heller, Nicholas
    Andrearczyk, Vincent
    Depeursinge, Adrien
    Hatt, Mathieu
    Sekuboyina, Anjany
    Loeffler, Maximilian T.
    Liebl, Hans
    Dorent, Reuben
    Vercauteren, Tom
    Shapey, Jonathan
    Kujawa, Aaron
    Cornelissen, Stefan
    Langenhuizen, Patrick
    Ben-Hamadou, Achraf
    Rekik, Ahmed
    BIOMEDICAL ENGINEERING-BIOMEDIZINISCHE TECHNIK, 2025, 70 (01): : 71 - 90
  • [6] TO-Scene: A Large-Scale Dataset for Understanding 3D Tabletop Scenes
    Xu, Mutian
    Chen, Pei
    Liu, Haolin
    Han, Xiaoguang
    COMPUTER VISION - ECCV 2022, PT XXVII, 2022, 13687 : 340 - 356
  • [7] RenderIH: A Large-scale Synthetic Dataset for 3D Interacting Hand Pose Estimation
    Li, Lijun
    Tian, Linrui
    Zhang, Xindi
    Wang, Qi
    Zhang, Bang
    Bo, Liefeng
    Liu, Mengyuan
    Chen, Chen
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 20338 - 20348
  • [8] RoScenes: A Large-Scale Multi-view 3D Dataset for Roadside Perception
    Zhu, Xiaosu
    Sheng, Hualian
    Cai, Sijia
    Deng, Bing
    Yang, Shaopeng
    Liang, Qiao
    Chen, Ken
    Gao, Lianli
    Song, Jingkuan
    Ye, Jieping
    COMPUTER VISION - ECCV 2024, PT XLI, 2025, 15099 : 331 - 347
  • [9] SignAvatars: A Large-Scale 3D Sign Language Holistic Motion Dataset and Benchmark
    Yu, Zhengdi
    Huang, Shaoli
    Cheng, Yongkang
    Birdal, Tolga
    COMPUTER VISION - ECCV 2024, PT V, 2025, 15063 : 1 - 19
  • [10] Modelling and validation of 3D cadastral objects
    Thompson, R. J.
    van Oosterom, P. J. M.
    URBAN AND REGIONAL DATA MANAGEMENT, 2012, : 7 - 23