A Tight Smooth Approximation of the Maximum Function and its Applications

被引:0
|
作者
Yin, Ke [1 ]
Zhang, Kewei [2 ]
机构
[1] Huazhong Univ Sci & Technol, Ctr Math Sci, Wuhan 430074, Hubei, Peoples R China
[2] Univ Nottingham, Sch Math Sci, Nottingham, England
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
Maximum function; compensated convex transforms; tight smooth approximation; convex optimization; minimax problem; COMPENSATED CONVEXITY; MINIMAX; ALGORITHMS; NONSMOOTH;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We analyse the C1,1 tight approximations of the finite maximum function defined by the upper compensated convex transform introduced in a previous paper of the second author [Compensated convexity and its applications, Ann. Inst. H. Poincare (C), Non Linear Analysis 25/4 (2008) 743- 771]. We present the precise geometric structure, the tightness property, the sharp error estimates and the asymptotic properties of our approximation. We compare our method with the well-known 'log-sum-exp' smooth approximation by showing that our approximation is geometrically much sharper than the 'log-sum-exp' approximation. We apply our results to smooth approximations for functions defined by the maximum of finitely many smooth functions in Rn arising from finite and semi-infinite minimax optimization problems.
引用
收藏
页码:1193 / 1224
页数:32
相关论文
共 50 条
  • [1] Smooth Convex Approximation to the Maximum Eigenvalue Function
    Xin Chen
    Houduo Qi
    Liqun Qi
    Kok-Lay Teo
    Journal of Global Optimization, 2004, 30 : 253 - 270
  • [2] Smooth convex approximation to the maximum eigenvalue function
    Chen, X
    Qi, HD
    Qi, LQ
    Teo, KL
    JOURNAL OF GLOBAL OPTIMIZATION, 2004, 30 (2-3) : 253 - 270
  • [3] SHRINKAGE FUNCTION AND ITS APPLICATIONS IN MATRIX APPROXIMATION
    Boas, Toby
    Dutta, Aritra
    Li, Xin
    Mercier, Kathryn P.
    Niderman, Eric
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2017, 32 : 163 - 171
  • [4] Tight approximation bounds for maximum multi-coverage
    Siddharth Barman
    Omar Fawzi
    Suprovat Ghoshal
    Emirhan Gürpınar
    Mathematical Programming, 2022, 192 : 443 - 476
  • [5] Tight Approximation Bounds for Maximum Multi-coverage
    Barman, Siddharth
    Fawzi, Omar
    Ghoshal, Suprovat
    Gurpinar, Emirhan
    INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, IPCO 2020, 2020, 12125 : 66 - 77
  • [6] Tight Approximation Algorithms for Maximum General Assignment Problems
    Fleischer, Lisa
    Goemans, Michel X.
    Mirrokni, Vahab S.
    Sviridenko, Maxim
    PROCEEDINGS OF THE SEVENTHEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2006, : 611 - +
  • [7] Tight Approximation Algorithms for Maximum Separable Assignment Problems
    Fleischer, Lisa
    Goemans, Michel X.
    Mirrokni, Vahab S.
    Sviridenko, Maxim
    MATHEMATICS OF OPERATIONS RESEARCH, 2011, 36 (03) : 416 - 431
  • [8] Tight approximation bounds for maximum multi-coverage
    Barman, Siddharth
    Fawzi, Omar
    Ghoshal, Suprovat
    Gurpinar, Emirhan
    MATHEMATICAL PROGRAMMING, 2022, 192 (1-2) : 443 - 476
  • [9] Approximation to the expectation of a function of order statistics and its applications
    Cheng S.
    Acta Mathematicae Applicatae Sinica, 1997, 13 (1) : 71 - 86
  • [10] On Approximation of Gaussian Q-Function and its Applications
    ShirinAbadi, Parnian A.
    Abbasi, Arash
    2019 IEEE 10TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2019, : 883 - 887