Anderson-Darling and Cramer-von Mises tests;
Information measures;
Maximum likelihood estimation;
Monte Carlo method;
Power test;
R software;
REGRESSION-MODELS;
CHANGE-POINT;
VERSION;
SHAPE;
D O I:
暂无
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
In this work, we propose a goodness-of-fit test based on the Kullback-Leibler information for the Birnbaum-Saunders distribution. We use Monte Carlo simulations to evaluate the size and power of the proposed test for several alternative hypotheses under different sample sizes. We compare the powers with standard goodness-of-fit tests based as the Anderson-Darling and Cramer-von Mises tests. Finally, we illustrate the proposed test with a real data set to show its potential applications.
机构:
IIMAS UNAM, Dept Probabil & Stat, Apdo Postal 20-126, Mexico City 01000, DF, MexicoIIMAS UNAM, Dept Probabil & Stat, Apdo Postal 20-126, Mexico City 01000, DF, Mexico
Contreras-Cristan, A.
Gutierrez-Pena, E.
论文数: 0引用数: 0
h-index: 0
机构:
IIMAS UNAM, Dept Probabil & Stat, Apdo Postal 20-126, Mexico City 01000, DF, MexicoIIMAS UNAM, Dept Probabil & Stat, Apdo Postal 20-126, Mexico City 01000, DF, Mexico
Gutierrez-Pena, E.
Walker, S. G.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Texas Austin, Dept Math, Austin, TX 78712 USA
Univ Texas Austin, Dept Stat & Data Sci, Austin, TX 78712 USAIIMAS UNAM, Dept Probabil & Stat, Apdo Postal 20-126, Mexico City 01000, DF, Mexico