EVOLVE: Towards Converging Big-Data, High-Performance and Cloud-Computing Worlds

被引:0
|
作者
Tzenetopoulos, Achilleas [1 ]
Masouros, Dimosthenis [1 ]
Koliogeorgi, Konstantina [1 ]
Xydis, Sotirios [1 ,2 ]
Soudris, Dimitrios [1 ]
Chazapis, Antony [3 ]
Kozanitis, Christos [3 ]
Bilas, Angelos [3 ]
Pinto, Christian [4 ]
Huy-Nam Nguyen [5 ]
Louloudakis, Stelios [6 ]
Gardikis, Georgios [7 ]
Vamvakas, George [7 ]
Aubrun, Michelle [8 ]
Symeonidou, Christy [9 ]
Spitadakis, Vassilis [9 ]
Xylogiannopoulos, Konstantinos [10 ]
Peischl, Bernhard [10 ]
Kalayci, Tahir Emre [11 ]
Stocker, Alexander [11 ]
Acquaviva, Jean-Thomas [12 ]
机构
[1] Inst Commun & Comp Syst ICCS, Athens, Greece
[2] Harokopio Univ Athens HUA, Dept Informat & Telemat DIT, Athens, Greece
[3] FORTH, Inst Comp Sci, Iraklion, Greece
[4] IBM Res Europe, Dublin, Ireland
[5] ATOS Bull, Paris, France
[6] Sunlight Io, Iraklion, Greece
[7] Space Hellas SA, Athens, Greece
[8] Thales Alenia Space, Toulouse, France
[9] NEUROCOM Luxembourg, Luxembourg, Luxembourg
[10] AVL List GmbH, Graz, Austria
[11] Virtual Vehicle Res GmbH, Graz, Austria
[12] DataDirect Networks, Paris, France
基金
欧盟地平线“2020”;
关键词
HPC; Cloud-computing; Big-Data; computing platform; accelerators; interference; resource orchestration;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
EVOLVE is a pan European Innovation Action that aims to fully-integrate High-Performance-Computing (HPC) hardware with state-of-the-art software technologies under a unique testbed, that enables the convergence of HPC, Cloud and Big-Data worlds and increases our ability to extract value from massive and demanding datasets. EVOLVE's advanced compute platform combines HPC-enabled capabilities, with transparent deployment in high abstraction level, and a versatile Big-Data processing stack for end-to-end workflows. Hence, domain experts have the potential to improve substantially the efficiency of existing services or introduce new models in the respective domains, e.g., automotive services, bus transportation, maritime surveillance and others. In this paper, we describe EVOLVE's testbed, and evaluate the performance of the integrated pilots from different domains.
引用
收藏
页码:975 / 980
页数:6
相关论文
共 50 条
  • [1] Big-data in cloud computing: a taxonomy of risks
    Miller, Holmes E.
    INFORMATION RESEARCH-AN INTERNATIONAL ELECTRONIC JOURNAL, 2013, 18 (01):
  • [2] Cloud-computing and precision medicine: Big data offers big opportunities
    April, A.
    EUROPEAN JOURNAL OF PUBLIC HEALTH, 2019, 29 : 99 - 99
  • [3] Converged Computing: A Best of Both Worlds of High-Performance Computing and Cloud
    Sochat, Vanessa
    Milroy, Daniel
    Misale, Claudia
    Luettgau, Jakob
    Bollig, Evan F.
    Magro, William
    COMPUTING IN SCIENCE & ENGINEERING, 2024, 26 (03) : 4 - 7
  • [4] High-performance computing strategies for seismic-imaging software on the cluster and cloud-computing environments
    Okita, Nicholas T.
    Camargo, Alexandre W.
    Ribeiro, Jose
    Coimbra, Tiago A.
    Benedicto, Caian
    Faccipieri, Jorge H.
    GEOPHYSICAL PROSPECTING, 2022, 70 (01) : 57 - 78
  • [5] High-performance interconnection networks in the Exascale and Big-Data Era
    Escudero-Sahuquillo, Jesus
    Javier Garcia, Pedro
    JOURNAL OF SUPERCOMPUTING, 2016, 72 (12): : 4415 - 4417
  • [6] High-performance interconnection networks in the Exascale and Big-Data Era
    Jesús Escudero-Sahuquillo
    Pedro Javier Garcia
    The Journal of Supercomputing, 2016, 72 : 4415 - 4417
  • [7] A Cloud-Computing Local Histogram Construction Algorithm for Big Image Data
    Cheng, Chung-Chih
    Cheng, Fan-Chieh
    Lin, Po-Hsiung
    Huang, Shih-Chia
    2014 IEEE INTERNATIONAL CONGRESS ON BIG DATA (BIGDATA CONGRESS), 2014, : 200 - 203
  • [8] Contributions to High-Performance Big Data Computing
    Fox, Geoffrey
    Qiu, Judy
    Crandall, David
    Von Laszewski, Gregor
    Beckstein, Oliver
    Paden, John
    Paraskevakos, Ioannis
    Jha, Shantenu
    Wang, Fusheng
    Marathe, Madhav
    Vullikanti, Anil
    Cheatham, Thomas
    FUTURE TRENDS OF HPC IN A DISRUPTIVE SCENARIO, 2019, 34 : 34 - 81
  • [9] High-Performance Computing for Big Data Processing
    Wu, Yulei
    Xiang, Yang
    Ge, Jingguo
    Muller, Peter
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2018, 88 : 693 - 695
  • [10] Data Transfer Scheduling for Maximizing Throughput of Big-Data Computing in Cloud Systems
    Xie, Ruitao
    Jia, Xiaohua
    IEEE TRANSACTIONS ON CLOUD COMPUTING, 2018, 6 (01) : 87 - 98