Shipboard Power Systems Reconfiguration-A Cyber-Physical Framework For Response Time Analysis

被引:12
|
作者
Bose, Sayak [1 ]
Natarajan, Balasubramanium [1 ]
Scoglio, Caterina M. [1 ]
Schulz, Noel N. [1 ]
Gruenbacher, Don M. [1 ]
Das, Sanjoy [1 ]
机构
[1] Kansas State Univ, Dept Elect & Comp Engn, Manhattan, KS 66506 USA
关键词
Cyber-physical systems; delay distribution; end-to-end response time analysis framework; real-time quality of service (QoS); sensor topology; shipboard power system (SPS); NETWORK; DELAY; CALCULUS;
D O I
10.1109/TII.2013.2262282
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Several applications within a shipboard system involve the integration of physical systems (e. g., power systems) and cyber computing platforms such as command and control, communications, and sensing networks, and require real-time quality of service (QoS) guarantees. In this paper, the distribution of total (end-to-end) delay associated with fault diagnosis and reconfiguration of shipboard power system (SPS) is investigated from a cyber-physical systems (CPS) perspective. Specifically, a cross-layer end-to-end delay analysis framework is introduced for SPS reconfiguration. The proposed framework stochastically models the heterogeneity of actions of various subsystems involved in the reconfiguration tasks viz., generation of fault information by sensor nodes associated to the power system, processing of actions at control center to resolve fault locations and reconfiguration, and flow of information through communication network to perform necessary actions. The proposed framework then combines appropriately the output delay distributions from each subsystem to: 1) analytically predict the distribution of end-to-end delay in SPS reconfiguration after the occurrence of faults and 2) analyze and design real-time reconfiguration solutions for shipboard CPS, that meet total delay requirements. Simulations using various topological scenarios demonstrate that the proposed analytical framework closely predict the total delay associated with SPS reconfiguration.
引用
收藏
页码:439 / 449
页数:11
相关论文
共 50 条
  • [1] Response and Reconfiguration of Cyber-Physical Control Systems: A survey
    Combita, Luis F.
    Giraldo, Jairo
    Cardenas, Alvaro A.
    Quijano, Nicanor
    2015 IEEE 2ND COLOMBIAN CONFERENCE ON AUTOMATIC CONTROL (CCAC), 2015,
  • [2] A Mathematic Framework for Analysis of Complex Cyber-Physical Power Systems
    Kolacinski, Richard M.
    Loparo, Kenneth A.
    2012 IEEE POWER AND ENERGY SOCIETY GENERAL MEETING, 2012,
  • [3] A Framework for Service Restoration of Cyber-Physical Power Systems
    Hassan, Chaudhry Talha
    Jadoon, Tariq Mahmood
    2023 IEEE BELGRADE POWERTECH, 2023,
  • [4] Towards the Integration of Modern Power Systems into a Cyber-Physical Framework
    Konstantopoulos, George C.
    Alexandridis, Antonio T.
    Papageorgiou, Panos C.
    ENERGIES, 2020, 13 (09)
  • [5] Time in Cyber-Physical Systems
    Shrivastava, Aviral
    Derler, Patricia
    Li Baboud, Ya-Shian
    Stanton, Kevin
    Khayatian, Mohammad
    Andrade, Hugo A.
    Weiss, Marc
    Eidson, John
    Chandhoke, Sundeep
    2016 INTERNATIONAL CONFERENCE ON HARDWARE/SOFTWARE CODESIGN AND SYSTEM SYNTHESIS (CODES+ISSS), 2016,
  • [6] A Framework for Developing Cyber-Physical Systems
    He, Xudong
    Dong, Zhijiang
    Yin, Heng
    Fu, Yujian
    INTERNATIONAL JOURNAL OF SOFTWARE ENGINEERING AND KNOWLEDGE ENGINEERING, 2017, 27 (9-10) : 1361 - 1386
  • [7] Self-reconfiguration of real-time communication in cyber-physical systems
    Jatzkowski, Jan
    Kleinjohann, Bernd
    MECHATRONICS, 2016, 34 : 72 - 77
  • [8] Communication and container reconfiguration for cyber-physical production systems
    Denzler, Patrick
    Ramsauer, Daniel
    Preindl, Thomas
    Kastner, Wolfgang
    2021 26TH IEEE INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION (ETFA), 2021,
  • [9] Analysis of Optimal Reconfiguration of Shipboard Power Systems
    Bose, Sayak
    Pal, Siddharth
    Natarajan, Balasubramaniam
    Scoglio, Caterina M.
    Das, Sanjoy
    Schulz, Noel N.
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2012, 27 (01) : 189 - 197
  • [10] Cybersecurity in Cyber-Physical Power Systems
    Ribas Monteiro, Luiz Fernando
    Rodrigues, Yuri R.
    Zambroni de Souza, A. C.
    ENERGIES, 2023, 16 (12)