AGLER INTERPOLATION FAMILIES OF KERNELS

被引:0
|
作者
Jury, Michael T. [1 ]
Knese, Greg [2 ]
McCullough, Scott [1 ]
机构
[1] Univ Florida, Dept Math, Gainesville, FL 32611 USA
[2] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
来源
OPERATORS AND MATRICES | 2009年 / 3卷 / 04期
基金
美国国家科学基金会;
关键词
reproducing kernel; Nevanlinna-Pick interpolation; NEVANLINNA-PICK INTERPOLATION; SEMIGROUPOID ALGEBRAS; CONNECTED DOMAINS; HILBERT-SPACES; THEOREM; INFINITY; BIDISK;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An abstract Pick interpolation theorem for a family of positive semi-definite kernels on a set X is formulated. The result complements those in [Ag] and [AM02] and will subsequently be applied to Pick interpolation on distinguished varieties [JKM].
引用
收藏
页码:571 / 587
页数:17
相关论文
共 50 条
  • [1] Pick Interpolation on the Polydisc: Small Families of Sufficient Kernels
    Gautam Bharali
    Vikramjeet Singh Chandel
    Complex Analysis and Operator Theory, 2019, 13 : 2069 - 2093
  • [2] Pick Interpolation on the Polydisc: Small Families of Sufficient Kernels
    Bharali, Gautam
    Chandel, Vikramjeet Singh
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2019, 13 (05) : 2069 - 2093
  • [3] Interpolation in the noncommutative Schur-Agler class
    Ball, Joseph A.
    Bolotnikov, Vladimir
    JOURNAL OF OPERATOR THEORY, 2007, 58 (01) : 83 - 126
  • [4] CARATHEODORY INTERPOLATION KERNELS
    MCCULLOUGH, S
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 1992, 15 (01) : 43 - 71
  • [5] Interpolation with the polynomial kernels
    Elefante, Giacomo
    Erb, Wolfgang
    Marchetti, Francesco
    Perracchione, Emma
    Poggiali, Davide
    Santin, Gabriele
    DOLOMITES RESEARCH NOTES ON APPROXIMATION, 2022, 15 : 45 - 60
  • [6] A tangential interpolation problem on the distinguished boundary of the polydisk for the Schur-Agler class
    Ball, JA
    Bolotnikov, V
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 273 (02) : 328 - 348
  • [7] Image Interpolation by Blending Kernels
    Liang, Luming
    IEEE SIGNAL PROCESSING LETTERS, 2008, 15 : 805 - 808
  • [8] Cardinal Interpolation with Gaussian Kernels
    Hangelbroek, T.
    Madych, W.
    Narcowich, F.
    Ward, J. D.
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2012, 18 (01) : 67 - 86
  • [9] Cardinal Interpolation with Gaussian Kernels
    T. Hangelbroek
    W. Madych
    F. Narcowich
    J. D. Ward
    Journal of Fourier Analysis and Applications, 2012, 18 : 67 - 86
  • [10] Interpolation with variably scaled kernels
    Bozzini, Mira
    Lenarduzzi, Licia
    Rossini, Milvia
    Schaback, Robert
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2015, 35 (01) : 199 - 219