A THEORY FOR INTERACTIONS OF TWO DYNAMICAL SYSTEMS

被引:0
|
作者
Luo, Albert C. J. [1 ]
机构
[1] So Illinois Univ, Dept Mech & Ind Engn, Edwardsville, IL 62026 USA
关键词
OSCILLATOR;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a generalized theory for interactions of two separable dynamical systems is presented. The corresponding mathematical conditions are developed to determine the motion complexity of the two systems, which is caused by the interaction between two systems. This theory presents a different point of view about the interactions of dynamical system.
引用
收藏
页码:305 / 312
页数:8
相关论文
共 50 条
  • [1] Dynamical systems in the theory of solitons in the presence of nonlocal interactions
    Alfimov, G. L.
    Eleonsky, V. M.
    Kulagin, N. E.
    CHAOS, 1992, 2 (04) : 566 - 570
  • [2] DYNAMICAL THEORY OF STRONG INTERACTIONS
    SUSSKIND, L
    PHYSICAL REVIEW, 1967, 154 (05): : 1411 - &
  • [3] Qualitative Theory of Two-Dimensional Polynomial Dynamical Systems
    Shestopalov, Yury
    Shakhverdiev, Azizaga
    SYMMETRY-BASEL, 2021, 13 (10):
  • [4] CLASSICAL THEORY OF DYNAMICAL IMAGE INTERACTIONS
    CHAN, D
    RICHMOND, P
    SURFACE SCIENCE, 1973, 39 (02) : 437 - 440
  • [5] A DYNAMICAL THEORY OF QUARKS AND STRONG INTERACTIONS
    RAYSKI, J
    NUCLEAR PHYSICS, 1967, 87 (06): : 597 - &
  • [6] On the Theory of Synchronization of Dynamical Systems
    Shchennikov, A. V.
    Shchennikov, V. N.
    DIFFERENTIAL EQUATIONS, 2018, 54 (12) : 1674 - 1678
  • [7] Ergodic theory and dynamical systems
    Kra, B.
    Melbourne, I.
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2023, 43 (03) : f1 - f2
  • [8] On the theory of hybrid dynamical systems
    Andreichenko, DK
    Andreichenko, KP
    JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL, 2000, 39 (03) : 383 - 398
  • [9] Kinetic theory of dynamical systems
    Van Zon, R
    Van Beijeren, H
    Dorfman, JR
    DYNAMICS: MODELS AND KINETIC METHODS FOR NON-EQUILIBRIUM MANY BODY SYSTEMS, 2000, 371 : 131 - 167
  • [10] Dynamical systems theory of irreversibilhty
    Gaspard, P
    Chaotic Dynamics and Transport in Classical and Quantum Systems, 2005, 182 : 107 - 157