Electric-magnetic duality invariant Lagrangians

被引:39
|
作者
Hatsuda, M [1 ]
Kamimura, K
Sekiya, S
机构
[1] KEK, Div Theory, Tsukuba, Ibaraki 3050801, Japan
[2] Toho Univ, Dept Phys, Funabashi, Chiba 2748510, Japan
关键词
electric-magnetic duality; Born-Infeld theory;
D O I
10.1016/S0550-3213(99)00509-X
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We find general non-linear Lagrangians invariant under the electric-magnetic duality. They are characterized by an arbitrary function and are reduced to the Maxwell theory in weak field limit. We present some explicit examples that include generalizations of the Born-Infeld theory. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:341 / 353
页数:13
相关论文
共 50 条
  • [1] On electric-magnetic duality
    Nahm, W
    NUCLEAR PHYSICS B, 1997, : 91 - 96
  • [2] GLOBAL ASPECTS OF ELECTRIC-MAGNETIC DUALITY
    VERLINDE, E
    NUCLEAR PHYSICS B, 1995, 455 (1-2) : 211 - 225
  • [3] Electric-magnetic duality in noncommutative geometry
    Lizzi, F
    Szabo, RJ
    PHYSICS LETTERS B, 1998, 417 (3-4) : 303 - 311
  • [4] Electric-Magnetic Duality and Topological Insulators
    Karch, A.
    PHYSICAL REVIEW LETTERS, 2009, 103 (17)
  • [5] Soft charges and electric-magnetic duality
    V. Hosseinzadeh
    A. Seraj
    M. M. Sheikh-Jabbari
    Journal of High Energy Physics, 2018
  • [6] Double copy of electric-magnetic duality
    Huang, Yu-tin
    Kol, Uri
    O'Connell, Donal
    PHYSICAL REVIEW D, 2020, 102 (04):
  • [7] Electric-magnetic duality in noncommutative geometry
    Physics Letters. Section B: Nuclear, Elementary Particle and High-Energy Physics, 417 (03):
  • [8] Can (electric-magnetic) duality be gauged?
    Bunster, Claudio
    Henneaux, Marc
    PHYSICAL REVIEW D, 2011, 83 (04):
  • [9] Electric-magnetic black hole duality
    Deser, S
    Henneaux, M
    Teitelboim, C
    PHYSICAL REVIEW D, 1997, 55 (02): : 826 - 828
  • [10] Soft charges and electric-magnetic duality
    Hosseinzadeh, V.
    Seraj, A.
    Sheikh-Jabbari, M. M.
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (08):