Efficient algorithms for approximating quantum partition functions

被引:8
|
作者
Mann, Ryan L. [1 ]
Helmuth, Tyler [1 ]
机构
[1] Univ Bristol, Sch Math, Bristol BS8 1UG, Avon, England
基金
英国工程与自然科学研究理事会; 欧盟地平线“2020”;
关键词
D O I
10.1063/5.0013689
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We establish a polynomial-time approximation algorithm for partition functions of quantum spin models at high temperature. Our algorithm is based on the quantum cluster expansion of Netony and Redig and the cluster expansion approach to designing algorithms due to Helmuth, Perkins, and Regts. Similar results have previously been obtained by related methods, and our main contribution is a simple and slightly sharper analysis for the case of pairwise interactions on bounded-degree graphs. Published under license by AIP Publishing.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Efficient Algorithms for Approximating Quantum Partition Functions at Low Temperature
    Helmuth, Tyler
    Mann, Ryan L.
    QUANTUM, 2023, 7
  • [2] Quantum algorithm for approximating partition functions
    Wocjan, Pawel
    Chiang, Chen-Fu
    Nagaj, Daniel
    Abeyesinghe, Anura
    PHYSICAL REVIEW A, 2009, 80 (02):
  • [3] A Sublinear-Time Quantum Algorithm for Approximating Partition Functions
    Cornelissen, Arjan
    Hamoudi, Yassine
    PROCEEDINGS OF THE 2023 ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2023, : 1245 - 1264
  • [4] Quantum algorithms and approximating polynomials for composed functions with shared inputs
    Bun, Mark
    Kothari, Robin
    Thaler, Justin
    QUANTUM, 2021, 5
  • [5] Simpler (Classical) and Faster (Quantum) Algorithms for Gibbs Partition Functions
    Arunachalam, Srinivasan
    Havlicek, Vojtech
    Nannicini, Giacomo
    Temme, Kristan
    Wocjan, Pawel
    QUANTUM, 2022, 6
  • [6] Simpler (Classical) and Faster (Quantum) Algorithms for Gibbs Partition Functions
    Arunachalam, Srinivasan
    Havlicek, Vojtech
    Nannicini, Giacomo
    Temme, Kristan
    Wocjan, Pawel
    2021 IEEE INTERNATIONAL CONFERENCE ON QUANTUM COMPUTING AND ENGINEERING (QCE 2021) / QUANTUM WEEK 2021, 2021, : 112 - 122
  • [7] Greedy splitting algorithms for approximating multiway partition problems
    Zhao, L
    Nagamochi, H
    Ibaraki, T
    MATHEMATICAL PROGRAMMING, 2005, 102 (01) : 167 - 183
  • [8] Greedy splitting algorithms for approximating multiway partition problems
    Liang Zhao
    Hiroshi Nagamochi
    Toshihide Ibaraki
    Mathematical Programming, 2005, 102 : 167 - 183
  • [9] Computing Classical Partition Functions: From Onsager and Kaufman to Quantum Algorithms
    Gargiulo, Roberto
    Rizzi, Matteo
    Zeier, Robert
    PROCEEDINGS OF RECENT ADVANCES IN QUANTUM COMPUTING AND TECHNOLOGY, REAQCT 2024, 2024, : 20 - 50
  • [10] Efficient algorithms for approximating polygonal chains
    Agarwal, PK
    Varadarajan, KR
    DISCRETE & COMPUTATIONAL GEOMETRY, 2000, 23 (02) : 273 - 291