Local strong solutions to the Cauchy problem of two-dimensional nonhomogeneous magneto-micropolar fluid equations with nonnegative density

被引:9
|
作者
Zhong, Xin [1 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonhomogeneous magneto-micropolar fluid system; strong solutions; Cauchy problem; vacuum; NAVIER-STOKES EQUATIONS; GLOBAL REGULARITY; EXISTENCE; SYSTEM; DECAY;
D O I
10.1142/S0219530519500167
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Cauchy problem of nonhomogeneous magneto-micropolar fluid system with zero density at infinity in the entire space 2. We prove that the system admits a unique local strong solution provided the initial density and the initial magnetic field decay not too slowly at infinity. In particular, there is no need to require any Choe-Kim type compatibility condition for the initial data.
引用
收藏
页码:245 / 273
页数:29
相关论文
共 50 条