GA-based Approach for Hiding Sensitive Itemsets by Transaction Insertion

被引:0
|
作者
Lin, Chun-Wei [1 ]
Hong, Tzung-Pei [2 ,4 ]
Chang, Chia-Ching [2 ]
Wang, Shyue-Liang [3 ]
机构
[1] Harbin Inst Technol, Shenzhen Grad Sch, Sch Comp Sci & Technol, IIIRC, Shenzhen 518055, Peoples R China
[2] Natl Univ Kaohsiung, Dept Comp Sci & Informat Engn, Kaohsiung 811, Taiwan
[3] Natl Univ Kaohsiung, Dept Informat Management, Kaohsiung 811, Taiwan
[4] Natl Sun Yat Sen Univ, Dept Comp Sci & Engn, Kaohsiung 804, Taiwan
关键词
Privacy preservation; Data mining; Genetic algorithm; Pre-large concept; Evolutionary computation;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Data mining technology is used to derive useful knowledge from large databases to aid corporate decision-making. The process of data collection and dissemination may, however, cause privacy concerns. Thus, privacy-preserving data mining (PPDM) has become an important issue. In this paper, an evolutionary privacy -preserving data mining method is proposed for finding appropriate itemsets within inserted transactions while hiding sensitive itemsets. An experiment is conducted to evaluate the performance of the proposed approach.
引用
收藏
页码:3 / 9
页数:7
相关论文
共 50 条
  • [1] The GA-based algorithms for optimizing hiding sensitive itemsets through transaction deletion
    Lin, Chun-Wei
    Hong, Tzung-Pei
    Yang, Kuo-Tung
    Wang, Leon Shyue-Liang
    APPLIED INTELLIGENCE, 2015, 42 (02) : 210 - 230
  • [2] The GA-based algorithms for optimizing hiding sensitive itemsets through transaction deletion
    Chun-Wei Lin
    Tzung-Pei Hong
    Kuo-Tung Yang
    Shyue-Liang Wang
    Applied Intelligence, 2015, 42 : 210 - 230
  • [3] A GA-Based Approach to Hide Sensitive High Utility Itemsets
    Lin, Chun-Wei
    Hong, Tzung-Pei
    Wong, Jia-Wei
    Lan, Guo-Cheng
    Lin, Wen-Yang
    SCIENTIFIC WORLD JOURNAL, 2014,
  • [4] Efficiently Hiding Sensitive Itemsets with Transaction Deletion Based on Genetic Algorithms
    Lin, Chun-Wei
    Zhang, Binbin
    Yang, Kuo-Tung
    Hong, Tzung-Pei
    SCIENTIFIC WORLD JOURNAL, 2014,
  • [5] A border-based approach for hiding sensitive frequent itemsets
    Sun, XZ
    Yu, PS
    FIFTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2005, : 426 - 433
  • [6] A sanitization approach for hiding sensitive itemsets based on particle swarm optimization
    Lin, Jerry Chun-Wei
    Liu, Qiankun
    Fournier-Viger, Philippe
    Hong, Tzung-Pei
    Voznak, Miroslav
    Zhan, Justin
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2016, 53 : 1 - 18
  • [7] A novel approach for hiding sensitive utility and frequent itemsets
    Liu, Xuan
    Xu, Feng
    Lv, Xin
    INTELLIGENT DATA ANALYSIS, 2018, 22 (06) : 1259 - 1278
  • [8] A border-based integer programming approach for hiding sensitive frequent itemsets
    Wang, Mingzheng
    He, Yue
    Han, Haishan
    ICIC Express Letters, 2013, 7 (3 B): : 1073 - 1080
  • [9] A GA-based Framework for Mining High Fuzzy Utility Itemsets
    Wu, Jimmy Ming-Tai
    Lin, Jerry Chun-Wei
    Fournier-Viger, Philippe
    Wiktorski, Tomasz
    Hong, Tzung-Pei
    Pirouz, Matin
    2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 2708 - 2715
  • [10] Ant Colony System Sanitization Approach to Hiding Sensitive Itemsets
    Wu, Jimmy Ming-Tai
    Zhan, Justin
    Lin, Jerry Chun-Wei
    IEEE ACCESS, 2017, 5 : 10024 - 10039