On the importance of the thermosiphon effect in CPG (CO2 plume geothermal) power systems

被引:100
|
作者
Adams, Benjamin M. [1 ]
Kuehn, Thomas H. [1 ]
Bielicki, Jeffrey M. [2 ,3 ]
Randolph, Jimmy B. [4 ]
Saar, Martin O. [4 ]
机构
[1] Univ Minnesota, Dept Mech Engn, Minneapolis, MN 55455 USA
[2] Ohio State Univ, Dept Civil Environm & Geodet Engn, Columbus, OH 43210 USA
[3] Ohio State Univ, John Glenn Sch Publ Affairs, Columbus, OH 43210 USA
[4] Univ Minnesota, Dept Earth Sci, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
Carbon dioxide; Geothermal energy; Carbon dioxide utilization; Thermosiphon; Renewable energy; Carbon dioxide plume; GAS-RESERVOIRS; NUMERICAL-SIMULATION; CARBON; SEQUESTRATION; INJECTION; FLUID; FLOW;
D O I
10.1016/j.energy.2014.03.032
中图分类号
O414.1 [热力学];
学科分类号
摘要
CPG (CO2 Plume Geothermal) energy systems use CO2 to extract thermal energy from naturally permeable geologic formations at depth. CO2 has advantages over brine: high mobility, low solubility of amorphous silica, and higher density sensitivity to temperature. The density of CO2 changes substantially between geothermal reservoir and surface plant, resulting in a buoyancy-driven convective current - a thermosiphon - that reduces or eliminates pumping requirements. We estimated and compared the strength of this thermosiphon for CO2 and for 20 weight percent NaCl brine for reservoir depths up to 5 km and geothermal gradients of 20, 35, and 50 degrees C/km. We found that through the reservoir, CO2 has a pressure drop approximately 3- 12 times less than brine at the same mass flowrate, making the CO2 thermosiphon sufficient to produce power using reservoirs as shallow as 0.5 km. At 2.5 km depth with a 35 degrees C/km gradient the approximate western U.S. continental mean - the CO2 thermosiphon converted approximately 10% of the energy extracted from the reservoir to fluid circulation, compared to less than 1% with brine, where additional mechanical pumping is necessary. We found CO2 is a particularly advantageous working fluid at depths between 0.5 km and 3 km. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:409 / 418
页数:10
相关论文
共 50 条
  • [1] A comparison of electric power output of CO2 Plume Geothermal (CPG) and brine geothermal systems for varying reservoir conditions
    Adams, Benjamin M.
    Kuehn, Thomas H.
    Bielicki, Jeffrey M.
    Randolph, Jimmy B.
    Saar, Martin O.
    APPLIED ENERGY, 2015, 140 : 365 - 377
  • [2] A Geospatial Cost Comparison of CO2 Plume Geothermal (CPG) Power and Geologic CO2 Storage
    Ogland-Hand, Jonathan D.
    Adams, Benjamin M.
    Bennett, Jeffrey A.
    Middleton, Richard S.
    FRONTIERS IN ENERGY RESEARCH, 2022, 10
  • [3] CO2 Thermosiphon for Competitive Geothermal Power Generation
    Atrens, Aleks D.
    Gurgenci, Hal
    Rudolph, Victor
    ENERGY & FUELS, 2009, 23 (1-2) : 553 - 557
  • [4] Heat depletion in sedimentary basins and its effect on the design and electric power output of CO2 Plume Geothermal (CPG) systems
    Adams, Benjamin M.
    Vogler, Daniel
    Kuehn, Thomas H.
    Bielicki, Jeffrey M.
    Garapati, Nagasree
    Saar, Martin O.
    RENEWABLE ENERGY, 2021, 172 : 1393 - 1403
  • [5] CO2 Plume Geothermal (CPG) Systems for Combined Heat and Power Production: an Evaluation of Various Plant Configurations
    Christopher Schifflechner
    Christoph Wieland
    Hartmut Spliethoff
    Journal of Thermal Science, 2022, 31 : 1266 - 1278
  • [6] CO2 Plume Geothermal(CPG) Systems for Combined Heat and Power Production: an Evaluation of Various Plant Configurations
    SCHIFFLECHNER Christopher
    WIELAND Christoph
    SPLIETHOFF Hartmut
    JournalofThermalScience, 2022, 31 (05) : 1266 - 1278
  • [7] CO2 Plume Geothermal (CPG) Systems for Combined Heat and Power Production: an Evaluation of Various Plant Configurations
    Schifflechner, Christopher
    Wieland, Christoph
    Spliethoff, Hartmut
    JOURNAL OF THERMAL SCIENCE, 2022, 31 (05) : 1266 - 1278
  • [8] Paving the way for CO2-Plume Geothermal (CPG) systems: A perspective on the CO2 surface equipment
    Schifflechner, Christopher
    de Reus, Jasper
    Schuster, Sebastian
    Villasana, Andreas Corpancho
    Brillert, Dieter
    Saar, Martin O.
    Spliethoff, Hartmut
    ENERGY, 2024, 305
  • [9] Increased Power Generation due to Exothermic Water Exsolution in CO2 Plume Geothermal (CPG) Power Plants
    Fleming, Mark R.
    Adams, Benjamin M.
    Kuehn, Thomas H.
    Bielicki, Jeffrey M.
    Saar, Martin O.
    GEOTHERMICS, 2020, 88
  • [10] Geothermal Solutions for Urban Energy Challenges: A Focus on CO2 Plume Geothermal Systems
    Antoneas, George
    Koronaki, Irene
    ENERGIES, 2024, 17 (02)