Bayesian Group-Sparse Modeling and Variational Inference

被引:96
|
作者
Babacan, S. Derin [1 ]
Nakajima, Shinichi [2 ]
Do, Minh N. [1 ]
机构
[1] Univ Illinois, Beckman Inst Adv Sci & Technol, Urbana, IL 61801 USA
[2] Nikon Inc, Opt Res Lab, Tokyo 1408601, Japan
基金
美国国家科学基金会;
关键词
Bayes methods; group-sparsity; variational inference; SIGNAL RECONSTRUCTION; SAMPLING SIGNALS; SCALE MIXTURES; UNION; SELECTION; REGRESSION;
D O I
10.1109/TSP.2014.2319775
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we present a general class of multivariate priors for group-sparse modeling within the Bayesian framework. We show that special cases of this class correspond to multivariate versions of several classical priors used for sparse modeling. Hence, this general prior formulation is helpful in analyzing the properties of different modeling approaches and their connections. We derive the estimation procedures with these priors using variational inference for fully Bayesian estimation. In addition, we discuss the differences between the proposed inference and deterministic inference approaches with these priors. Finally, we show the flexibility of this modeling by considering several extensions such as multiple measurements, within-group correlations, and overlapping groups.
引用
收藏
页码:2906 / 2921
页数:16
相关论文
共 50 条
  • [1] Variational Bayesian image restoration with group-sparse modeling of wavelet coefficients
    Zhang, Ganchi
    Kingsbury, Nick
    DIGITAL SIGNAL PROCESSING, 2015, 47 : 157 - 168
  • [2] MARKOV-TREE BAYESIAN GROUP-SPARSE MODELING WITH WAVELETS
    Zhang, Ganchi
    Kingsbury, Nick
    2016 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2016,
  • [3] GROUP-SPARSE ADAPTIVE VARIATIONAL BAYES ESTIMATION
    Themelis, Konstantinos E.
    Rontogiannis, Athanasios A.
    Koutroumbas, Konstantinos D.
    2014 PROCEEDINGS OF THE 22ND EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2014, : 1342 - 1346
  • [4] Selective inference for group-sparse linear models
    Yang, Fan
    Barber, Rina Foygel
    Jain, Prateek
    Lafferty, John
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [5] Sparse Audio Inpainting with Variational Bayesian Inference
    Chantas, Giannis
    Nikolopoulos, Spiros
    Kompatsiaris, Ioannis
    2018 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS (ICCE), 2018,
  • [6] A Robust Group-Sparse Representation Variational Method With Applications to Face Recognition
    Keinert, Fritz
    Lazzaro, Damiana
    Morigi, Serena
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (06) : 2785 - 2798
  • [7] Hierarchical Sparse Signal Recovery by Variational Bayesian Inference
    Wang, Lu
    Zhao, Lifan
    Bi, Guoan
    Wan, Chunru
    IEEE SIGNAL PROCESSING LETTERS, 2014, 21 (01) : 110 - 113
  • [8] Sparse Bayesian Hierarchical Mixture of Experts and Variational Inference
    Iikubo, Yuji
    Horii, Shunsuke
    Matsushima, Toshiyasu
    PROCEEDINGS OF 2018 INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY AND ITS APPLICATIONS (ISITA2018), 2018, : 60 - 64
  • [9] Sparse Variational Inference: Bayesian Coresets from Scratch
    Campbell, Trevor
    Beronov, Boyan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [10] GROUP-SPARSE MATRIX RECOVERY
    Zeng, Xiangrong
    Figueiredo, Mario A. T.
    2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,