Intelligent layout design of curvilinearly stiffened panels via deep learning-based method

被引:49
|
作者
Hao, Peng [1 ]
Liu, Dachuan [1 ]
Zhang, Kunpeng [1 ]
Yuan, Ye [1 ]
Wang, Bo [1 ]
Li, Gang [1 ]
Zhang, Xi [2 ]
机构
[1] Dalian Univ Technol, State Key Lab Struct Anal Ind Equipment, Key Lab Digital Twin Ind Equipment, Dept Engn Mech, Dalian 116023, Liaoning, Peoples R China
[2] China Acad Launch Vehicle Technol, Beijing 100076, Peoples R China
基金
中国国家自然科学基金;
关键词
Structural layout design; Surrogate-based optimization; Curvilinearly stiffened panels; Convolutional neural networks; Deep learning; NEURAL-NETWORKS; OPTIMIZATION; FRAMEWORK; SHELLS; PATH;
D O I
10.1016/j.matdes.2020.109180
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The structural efficiency of stiffened panels can be significantly improved by utilizing curvilinear stiffeners because of their outstanding design flexibility. However, the explosion of design variables poses a stiff challenge to the design of layouts of such structures. In this study, a novel layout optimization method is proposed for curvilinearly stiffened panels based on deep learning-based models, which enables their intelligent design. Unlike traditional methods, the image-based structural layout, which is characteristic of curvilinear stiffener paths, is employed as a design variable, and convolutional neural networks (CNNs) are used to extract the layout features from the curvilinear stiffeners and construct a surrogate model between layout features and structural performance. Subsequently, sub-optimization is performed using the constructed CNN to obtain new designs and correspondingly update the dataset. As the trained CNN does not require input data to exhibit the same number of stiffeners present in the training data, the proposed optimization framework can be used to address layout designs of stiffeners with variable numbers. Numerical examples demonstrate that the proposed intelligent optimization framework significantly improves the optimization efficiency compared to traditional models. It also indicates the extraordinary promise of deep learning-based methods in the field of engineering optimization. (C) 2020 The Author(s). Published by Elsevier Ltd.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Accelerated optimization of curvilinearly stiffened panels using deep learning
    Singh, Karanpreet
    Kapania, Rakesh K.
    THIN-WALLED STRUCTURES, 2021, 161 (161)
  • [2] Deep learning-based inverse method for layout design
    Zhang, Yujie
    Ye, Wenjing
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2019, 60 (02) : 527 - 536
  • [3] A Deep Learning-Based Method for Heat Source Layout Inverse Design
    Sun, Jialiang
    Zhang, Jun
    Zhang, Xiaoya
    Zhou, Weien
    IEEE ACCESS, 2020, 8 : 140038 - 140053
  • [4] A deep learning-based constrained intelligent routing method
    Rao, Zheheng
    Xu, Yanyan
    Pan, Shaoming
    PEER-TO-PEER NETWORKING AND APPLICATIONS, 2021, 14 (04) : 2224 - 2235
  • [5] A deep learning-based constrained intelligent routing method
    Zheheng Rao
    Yanyan Xu
    Shaoming Pan
    Peer-to-Peer Networking and Applications, 2021, 14 : 2224 - 2235
  • [6] A deep learning-based method for hull stiffened plate crack detection
    Ma, Dongliang
    Wang, Deyu
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART M-JOURNAL OF ENGINEERING FOR THE MARITIME ENVIRONMENT, 2021, 235 (02) : 570 - 585
  • [7] Deep learning–based inverse method for layout design
    Yujie Zhang
    Wenjing Ye
    Structural and Multidisciplinary Optimization, 2019, 60 : 527 - 536
  • [8] Intelligent design and buckling experiment of curvilinearly stiffened thin-walled structures
    Hao, Peng
    Zhang, Kunpeng
    Liu, Dachuan
    Wang, Xiaobo
    Feng, Shaojun
    Wang, Bo
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2024, 293
  • [9] The asymptotic-numerical method for the post-buckling response of curvilinearly stiffened panels
    Foligno, P. P.
    Yan, C. A.
    Vescovini, R.
    AERONAUTICAL JOURNAL, 2024, 128 (1330): : 2879 - 2905
  • [10] A deep learning-based method for the design of microstructural materials
    Tan, Ren Kai
    Zhang, Nevin L.
    Ye, Wenjing
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2020, 61 (04) : 1417 - 1438