PERIODIC SOLUTIONS FOR THE NON-LOCAL OPERATOR (-Δ plus m2)s - m2s WITH m ≥ 0

被引:18
|
作者
Ambrosio, Vincenzo [1 ]
机构
[1] Univ Naples Federico II, Dipartmento Matemat & Applicaz, Via Cinthia, I-80126 Naples, Italy
关键词
Nonlocal operators; linking theorem; periodic solutions; extension method; FRACTIONAL LAPLACIANS; NONLINEAR EQUATIONS; REGULARITY; EXISTENCE;
D O I
10.12775/TMNA.2016.063
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By using variational methods, we investigate the existence of T-periodic solutions to {[(-Delta(x) + m(2))(s) - m(2s)]u = f(x, u) in (0, T)(N), u(x + Te-i) = u(x) for all x is an element of R-N, i = 1 , . . . ,N, where s is an element of(0, 1), N > 2s, T > 0, m >= 0 and f is a continuous function, T-periodic in the first variable, verifying the Ambrosetti-Rabinowitz condition, with a polynomial growth at rate p is an element of(1, (N 2s)/(N 2s)).
引用
收藏
页码:75 / 104
页数:30
相关论文
共 50 条