Recurrences of Stirling and Lah numbers via second kind Bell polynomials

被引:0
|
作者
Qi, Feng [1 ,2 ,3 ]
Natalini, Pierpaolo [4 ]
Ricci, Paolo Emilio [5 ]
机构
[1] Inner Mongolia Univ Nationalities, Coll Math & Phys, Tongliao 028043, Inner Mongolia, Peoples R China
[2] Henan Polytech Univ, Inst Math, Jiaozuo 454010, Henan, Peoples R China
[3] Tianjin Polytech Univ, Sch Math Sci, Tianjin 300387, Peoples R China
[4] Univ Roma Tre, Dipartimento Matemat & Fis, Largo San Leonardo Murialdo 1, I-00146 Rome, Italy
[5] Int Telemat Univ UniNetturio, Sez Matemat, Corso Vittorio Emanuele II 39, I-00186 Rome, Italy
关键词
recurrence; Bell polynomial of the second kind; Stirling number; 1-associate Stirling number of the second kind; Lah number;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the paper, by virtue of several explicit formulas for special values and a recurrence of the Bell polynomials of the second kind, the authors derive several recurrences for the Stirling numbers of the first and second kinds, for 1-associate Stirling numbers of the second kind, for the Lah numbers, and for the binomial coefficients.
引用
收藏
页码:31 / 36
页数:6
相关论文
共 50 条
  • [1] EXTENDED DEGENERATE STIRLING NUMBERS OF THE SECOND KIND AND EXTENDED DEGENERATE BELL POLYNOMIALS
    Kim, Taekyun
    Kim, Dae San
    Jang, Lee-Chae
    Kwon, Hyuck-In
    UTILITAS MATHEMATICA, 2018, 106 : 11 - 21
  • [2] Stirling numbers of the second kind and Bell numbers for graphs
    Kereskenyi-Balogh, Zsofia
    Nyul, Gabor
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2014, 58 : 264 - 274
  • [3] An Explicit Formula for the Bell Numbers in Terms of the Lah and Stirling Numbers
    Feng Qi
    Mediterranean Journal of Mathematics, 2016, 13 : 2795 - 2800
  • [4] An Explicit Formula for the Bell Numbers in Terms of the Lah and Stirling Numbers
    Qi, Feng
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (05) : 2795 - 2800
  • [5] Complete and incomplete Bell polynomials associated with Lah–Bell numbers and polynomials
    Taekyun Kim
    Dae San Kim
    Lee-Chae Jang
    Hyunseok Lee
    Han-Young Kim
    Advances in Difference Equations, 2021
  • [6] Strong asymptotics of the generating polynomials of the stirling numbers of the second kind
    Elbert, C
    JOURNAL OF APPROXIMATION THEORY, 2001, 109 (02) : 198 - 217
  • [7] Weak asymptotics for the generating polynomials of the stirling numbers of the second kind
    Elbert, C
    JOURNAL OF APPROXIMATION THEORY, 2001, 109 (02) : 218 - 228
  • [8] Annihilating polynomials for quadratic forms and Stirling numbers of the second kind
    De Wannemacker, Stefan
    MATHEMATISCHE NACHRICHTEN, 2007, 280 (11) : 1257 - 1267
  • [9] Complete and incomplete Bell polynomials associated with Lah-Bell numbers and polynomials
    Kim, Taekyun
    Kim, Dae San
    Jang, Lee-Chae
    Lee, Hyunseok
    Kim, Han-Young
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [10] Some Identities on λ-Analogues of Lah Numbers and Lah-Bell Polynomials
    Kim, Dae San
    Kim, Taekyun
    Kim, Hyekyung
    Kwon, Jongkyum
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2024, 17 (03): : 1385 - 1402