A simple method for determination of fine resolution urban form patterns with distinct thermal properties using class-level landscape metrics

被引:13
|
作者
Zawadzka, J. E. [1 ]
Harris, J. A. [1 ]
Corstanje, R. [1 ]
机构
[1] Cranfield Univ, Cranfield MK43 0AL, Beds, England
基金
英国生物技术与生命科学研究理事会; 英国自然环境研究理事会;
关键词
Land surface temperature; Urban land cover classification; Fragstats; Class-level landscape metrics; K-means clustering; LAND-SURFACE TEMPERATURE; HEAT-ISLAND; SPATIAL CONFIGURATION; CLIMATE ZONES; IMPACT; ASSOCIATION; IMAGERY;
D O I
10.1007/s10980-020-01156-9
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Context Relationships between land surface temperature (LST) and spatial configuration of urban form described by landscape metrics so far have been investigated with coarse resolution LST imagery within artificially superimposed land divisions. Citywide micro-scale observations are needed to better inform urban design and help mitigate urban heat island effects in warming climates. Objectives The primary objective was to sub-divide an existing high-resolution land cover (LC) map into groups of patches with distinct spatial and thermal properties suitable for urban LST studies relevant to micro-scales. The secondary objective was to provide insights into the optimal analytical unit size to calculate class-level landscape metrics strongly correlated with LST at 2 m spatial resolution. Methods A two-tiered unsupervised k-means clustering analysis was deployed to derive spatially distinct groups of patches of each major LC class followed by further subdivisions into hottest, coldest and intermediary sub-classes, making use of high resolution class-level landscape metrics strongly correlated with LST. Results Aggregation class-level landscape metrics were consistently correlated with LST for green and grey LC classes and the optimal search window size for their calculations was 100 m for LST at 2 m resolution. ANOVA indicated that all Tier 1 and most of Tier 2 subdivisions were thermally and spatially different. Conclusions The two-tiered k-means clustering approach was successful at depicting subdivisions of major LC classes with distinct spatial configuration and thermal properties, especially at a broader Tier 1 level. Further research into spatial configuration of LC patches with similar spatial but different thermal properties is required.
引用
收藏
页码:1863 / 1876
页数:14
相关论文
共 1 条