共 50 条
On Crank-Nicolson Adams-Bashforth timestepping for approximate deconvolution models in two dimensions
被引:8
|作者:
Kaya, Songul
[1
]
Manica, Carolina C.
[2
]
Rebholz, Leo G.
[3
]
机构:
[1] Middle E Tech Univ, Dept Math, TR-06800 Ankara, Turkey
[2] Univ Fed Rio Grande do Sul, Dept Matemat Pura & Aplicada, BR-91509900 Porto Alegre, RS, Brazil
[3] Clemson Univ, Dept Math Sci, Clemson, SC 29634 USA
基金:
美国国家科学基金会;
关键词:
Crank-Nicolson Adams Bashforth;
Stability analysis;
Finite element methods;
Incompressible flow;
Approximate deconvolution;
INCOMPRESSIBLE NAVIER-STOKES;
LARGE-EDDY SIMULATION;
TIME;
SCHEME;
FLOW;
ERROR;
D O I:
10.1016/j.amc.2014.07.102
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We consider a Crank-Nicolson-Adams-Bashforth temporal discretization, together with a finite element spatial discretization, for efficiently computing solutions to approximate deconvolution models of incompressible flow in two dimensions. We prove a restriction on the timestep that will guarantee stability, and provide several numerical experiments that show the proposed method is very effective at finding accurate coarse mesh approximations for benchmark flow problems. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:23 / 38
页数:16
相关论文