On Crank-Nicolson Adams-Bashforth timestepping for approximate deconvolution models in two dimensions

被引:8
|
作者
Kaya, Songul [1 ]
Manica, Carolina C. [2 ]
Rebholz, Leo G. [3 ]
机构
[1] Middle E Tech Univ, Dept Math, TR-06800 Ankara, Turkey
[2] Univ Fed Rio Grande do Sul, Dept Matemat Pura & Aplicada, BR-91509900 Porto Alegre, RS, Brazil
[3] Clemson Univ, Dept Math Sci, Clemson, SC 29634 USA
基金
美国国家科学基金会;
关键词
Crank-Nicolson Adams Bashforth; Stability analysis; Finite element methods; Incompressible flow; Approximate deconvolution; INCOMPRESSIBLE NAVIER-STOKES; LARGE-EDDY SIMULATION; TIME; SCHEME; FLOW; ERROR;
D O I
10.1016/j.amc.2014.07.102
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a Crank-Nicolson-Adams-Bashforth temporal discretization, together with a finite element spatial discretization, for efficiently computing solutions to approximate deconvolution models of incompressible flow in two dimensions. We prove a restriction on the timestep that will guarantee stability, and provide several numerical experiments that show the proposed method is very effective at finding accurate coarse mesh approximations for benchmark flow problems. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:23 / 38
页数:16
相关论文
共 50 条
  • [1] On Crank-Nicolson Adams-Bashforth timestepping for approximate deconvolution models in two dimensions
    Kaya, Songul
    Manica, Carolina C.
    Rebholz, Leo G.
    Applied Mathematics and Computation, 2014, 246 : 23 - 38
  • [2] Stabilized Crank-Nicolson/Adams-Bashforth Schemes for Phase Field Models
    Feng, Xinlong
    Tang, Tao
    Yang, Jiang
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2013, 3 (01) : 59 - 80
  • [3] The decoupled Crank-Nicolson/Adams-Bashforth scheme for the Boussinesq equations with nonsmooth initial data
    Zhang, Tong
    Jin, Jiaojiao
    Jiang, Tao
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 337 : 234 - 266
  • [4] Decoupled Crank-Nicolson/Adams-Bashforth scheme for the Boussinesq equations with smooth initial data
    Zhang, Tong
    Jin, JiaoJiao
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2019, 96 (03) : 594 - 621
  • [5] Numerical analysis of a stabilized Crank-Nicolson/Adams-Bashforth finite difference scheme for Allen-Cahn equations
    Hou, Tianliang
    Leng, Haitao
    APPLIED MATHEMATICS LETTERS, 2020, 102
  • [6] Numerical implementation of the Crank-Nicolson/Adams-Bashforth scheme for the time-dependent Navier-Stokes equations
    He, Yinnian
    Li, Jian
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2010, 62 (06) : 647 - 659
  • [7] Stability and convergence of the Crank-Nicolson/Adams-Bashforth scheme for the time-dependent Navier-Stokes equations
    He, Yinnian
    Sun, Weiwei
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (02) : 837 - 869
  • [8] The Crank-Nicolson/Adams-Bashforth scheme for the Burgers equation with H2 and H1 initial data
    Zhang, Tong
    Jin, JiaoJiao
    HuangFu, YuGao
    APPLIED NUMERICAL MATHEMATICS, 2018, 125 : 103 - 142
  • [9] The Crank-Nicolson/Adams-Bashforth Scheme for the Time-Dependent Navier-Stokes Equations with Nonsmooth Initial Data
    He, Yinnian
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2012, 28 (01) : 155 - 187
  • [10] A numerical scheme based on compact integrated-RBFs and Adams-Bashforth/Crank-Nicolson algorithms for diffusion and unsteady fluid flow problems
    Thai-Quang, N.
    Le-Cao, K.
    Mai-Duy, N.
    Tran, C. -D.
    Tran-Cong, T.
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2013, 37 (12) : 1653 - 1667