In this note we show that the representation of the additive group of the Hilbert space L(2)([0, 1], R) on L(2)([0, 1], C) given by the multiplication operators pi(f) := e(if) is continuous but its space of smooth vectors is trivial. This example shows that a continuous unitary representation of an infinite dimensional Lie group need not be smooth.
机构:
Romanian Acad, Inst Math S Stoilow, 21 Calea Grivitei St, Bucharest 010702, RomaniaRomanian Acad, Inst Math S Stoilow, 21 Calea Grivitei St, Bucharest 010702, Romania
Beltita, Daniel
Golinski, Tomasz
论文数: 0引用数: 0
h-index: 0
机构:
Univ Bialystok, Inst Math, Ciolkowskiego 1M, PL-15245 Bialystok, PolandRomanian Acad, Inst Math S Stoilow, 21 Calea Grivitei St, Bucharest 010702, Romania
Golinski, Tomasz
论文数: 引用数:
h-index:
机构:
Jakimowicz, Grzegorz
Pelletier, Fernand
论文数: 0引用数: 0
h-index: 0
机构:
Univ Savoie Mt Blanc, CNRS, Lab Math LAMA, UMR 5127, Campus Sci, F-73370 Le Bourget Du Lac, FranceRomanian Acad, Inst Math S Stoilow, 21 Calea Grivitei St, Bucharest 010702, Romania