Decomposing multilocus linkage disequilibrium

被引:21
作者
Gorelick, R [1 ]
Laubichler, MD [1 ]
机构
[1] Arizona State Univ, Dept Biol, Tempe, AZ 85287 USA
关键词
D O I
10.1534/genetics.166.3.1581
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
We present a mathematically precise formulation of total linkage disequilibrium between multiple loci as the deviation from probabilistic independence and provide explicit formulas for all higher-order terms of linkage disequilibrium, thereby combining J. Dausset et aL's 1978 definition of linkage disequilibrium with H. Geiringer's 1944 approach. We recursively decompose higher-order linkage disequilibrium terms into lower-order ones. Our greatest simplification comes from defining linkage disequilibrium at a single locus as allele frequency at that locus. At each level, decomposition of linkage disequilibrium is mathematically equivalent to number theoretic compositions of positive integers; i.e., we have converted a genetic decomposition into a mathematical decomposition.
引用
收藏
页码:1581 / 1583
页数:3
相关论文
共 22 条
[1]  
Andrews G. E., 1976, THEORY PARTITIONS
[2]  
[Anonymous], 1974, GENETIC BASIS EVOLUT
[3]  
[Anonymous], 2000, WHERE MATH COMES
[4]   Patterns of linkage disequilibrium in the human genome [J].
Ardlie, KG ;
Kruglyak, L ;
Seielstad, M .
NATURE REVIEWS GENETICS, 2002, 3 (04) :299-309
[5]  
BENNETT JH, 1954, ANN EUGENIC, V18, P311
[6]  
Bulmer M. G., 1980, MATH THEORY QUANTITA
[7]  
CHEVERUD JM, 1995, GENETICS, V139, P1455
[8]   HAPLOTYPE STUDY OF HLA COMPLEX WITH SPECIAL REFERENCE TO HLA-DR SERIES AND TO BFC2 AND GLYOXALASE-I POLYMORPHISMS [J].
DAUSSET, J ;
LEGRAND, L ;
LEPAGE, V ;
CONTU, L ;
MARCELLIBARGE, A ;
WILDLOECHER, I ;
BENAJAM, A ;
MEO, T ;
DEGOS, L .
TISSUE ANTIGENS, 1978, 12 (04) :297-307
[9]  
DOBZHANSKY T, 1948, GENETICS, V33, P797
[10]   On the probability theory of linkage in Mendelian heredity [J].
Geiringer, H .
ANNALS OF MATHEMATICAL STATISTICS, 1944, 15 :25-57