Hydrothermal rutile to anatase reverse phase transformation

被引:4
|
作者
McNicoll, C. [1 ,2 ,3 ]
Kemmitt, T. [1 ,2 ]
Golovko, V. [2 ,3 ]
机构
[1] Callaghan Innovat Ltd, Adv Mat, Lower Hutt 5040, New Zealand
[2] Victoria Univ Wellington, MacDiarmid Inst Adv Mat & Nanotechnol, Wellington 6140, New Zealand
[3] Univ Canterbury, Dept Chem, Christchurch 8140, New Zealand
关键词
TiO2; hydrothermal; reverse phase change; anatase; rutile; oxalic acid; nanotechnology; transformation; SURFACES; ACID;
D O I
10.1504/IJNT.2014.060570
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
TiO2 sols peptised with oxalic acid were synthesised with oxalic acid ratios from 0.25 to 1.0 oxalic acid per titanium. The resulting transparent colloidal sols of TiO2 contained a mixture of phases and sizes of TiO2 particles depending on the oxalic acid content. The sols were hydrothermally treated at different temperatures ranging from 85 degrees C to 275 degrees C. Treatment below 100 degrees C produced mostly anatase, while the decomposition of the oxalic acid between 120 degrees C and 170 degrees C allowed a phase change to rutile, with a rapid crystallite size increase from around 10 nm to 40 nm. AT-FTIR confirmed the complete decomposition of organic acids within the sols treated at 220 degrees C. Very limited rutile crystallite growth was observed above this temperature. However, sols produced with the lower oxalic acid content remained as rutile while those produced using higher initial oxalic: Ti ratios (0.5 and 1.0 M equivalents) induced a reverse phase transformation back to anatase phase TiO2. High resolution SEM showed that the anatase phase TiO2 crystallites grew to around 30 nm at the highest temperature used (275 degrees C) having indistinct morphology, while the rutile phase TiO2 were elongated rods growing up to 100 nm.
引用
收藏
页码:493 / 501
页数:9
相关论文
共 50 条
  • [1] Rutile-to-anatase reverse phase transformation in nano titania with morphological changes in a hydrothermal approach
    Jyothilakshmi, V. P.
    Swaminathan, Sindhu
    INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, 2022, 19 (05) : 2427 - 2436
  • [2] Review of the anatase to rutile phase transformation
    Hanaor, Dorian A. H.
    Sorrell, Charles C.
    JOURNAL OF MATERIALS SCIENCE, 2011, 46 (04) : 855 - 874
  • [3] Review of the anatase to rutile phase transformation
    Dorian A. H. Hanaor
    Charles C. Sorrell
    Journal of Materials Science, 2011, 46 : 855 - 874
  • [4] Hydrothermal synthesis of anatase nanoleaves and size dependence of anatase–rutile transformation upon heating
    Lisnycha T.V.
    Kirillov S.A.
    Potapenko A.V.
    Terikovska T.E.
    Kosilov V.V.
    Vyshnevskiy O.A.
    International Nano Letters, 2016, 6 (2) : 111 - 117
  • [5] Chlorate ion mediated rutile to anatase reverse phase transformation in the TiO2 nanosystem
    Bhosale, Reshma
    Hyam, Rajesh
    Dhanya, P.
    Ogale, Satishchandra
    DALTON TRANSACTIONS, 2011, 40 (43) : 11374 - 11377
  • [6] Transformation of anatase to rutile and anatase grains growth
    Liu, H.Z.
    Chen, H.Y.
    Zhang, H.
    Wu, R.J.
    Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 2001, 35 (05): : 680 - 683
  • [7] Features of the anatase transformation to rutile
    E. P. Lokshin
    T. A. Sednev
    Russian Journal of General Chemistry, 2011, 81 : 1749 - 1754
  • [8] Features of the Anatase Transformation to Rutile
    Lokshin, E. P.
    Sednev, T. A.
    RUSSIAN JOURNAL OF GENERAL CHEMISTRY, 2011, 81 (09) : 1749 - 1754
  • [9] Effect of brookite presence on nanocrystalline anatase - rutile phase transformation
    Mahshid, Sara
    Askari, Masoud
    Ghamsari, Morteza Sasani
    INTERNATIONAL JOURNAL OF NANOTECHNOLOGY, 2009, 6 (10-11) : 961 - 972
  • [10] TOPOTAXY IN ANATASE-RUTILE TRANSFORMATION
    SHANNON, RD
    PASK, JA
    AMERICAN MINERALOGIST, 1964, 49 (11-1) : 1707 - &