On Characteristic Rank for Matrix and Tensor Completion [Lecture Notes]

被引:0
|
作者
Shapiro, Alexander [1 ]
Xie, Yao [1 ,2 ]
Zhang, Rui [1 ]
机构
[1] Georgia Inst Technol, H Milton Stewart Sch Ind & Syst Engn, Atlanta, GA 30332 USA
[2] Machine Learning Ctr, Los Angeles, CA USA
基金
美国国家科学基金会;
关键词
Tensors; Signal processing;
D O I
10.1109/MSP.2020.3046233
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this lecture note, we discuss a fundamental concept, referred to as the characteristic rank, that suggests a general framework for characterizing the basic properties of various low-dimensional models used in signal processing. We illustrate this framework through two examples-matrix and three-way tensor completion problems-and consider basic properties, including the identifiability of matrices and tensors, given partial observations. We consider cases without observation noise to illustrate the principle.
引用
收藏
页码:125 / 129
页数:5
相关论文
共 50 条
  • [1] Matrix completion and tensor rank
    Derksen, Harm
    LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (04): : 680 - 685
  • [2] On the equivalence between low-rank matrix completion and tensor rank
    Derksen, Harm
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (04): : 645 - 667
  • [3] PARALLEL MATRIX FACTORIZATION FOR LOW-RANK TENSOR COMPLETION
    Xu, Yangyang
    Hao, Ruru
    Yin, Wotao
    Su, Zhixun
    INVERSE PROBLEMS AND IMAGING, 2015, 9 (02) : 601 - 624
  • [4] Low-Rank Tensor Completion Using Matrix Factorization Based on Tensor Train Rank and Total Variation
    Meng Ding
    Ting-Zhu Huang
    Teng-Yu Ji
    Xi-Le Zhao
    Jing-Hua Yang
    Journal of Scientific Computing, 2019, 81 : 941 - 964
  • [5] Low-Rank Tensor Completion Using Matrix Factorization Based on Tensor Train Rank and Total Variation
    Ding, Meng
    Huang, Ting-Zhu
    Ji, Teng-Yu
    Zhao, Xi-Le
    Yang, Jing-Hua
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 81 (02) : 941 - 964
  • [6] Low Tensor-Ring Rank Completion by Parallel Matrix Factorization
    Yu, Jinshi
    Zhou, Guoxu
    Li, Chao
    Zhao, Qibin
    Xie, Shengli
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (07) : 3020 - 3033
  • [7] Low-rank tensor completion via smooth matrix factorization
    Zheng, Yu-Bang
    Huang, Ting-Zhu
    Ji, Teng-Yu
    Zhao, Xi-Le
    Jiang, Tai-Xiang
    Ma, Tian-Hui
    APPLIED MATHEMATICAL MODELLING, 2019, 70 : 677 - 695
  • [8] Low-Rank Tensor Completion by Approximating the Tensor Average Rank
    Wang, Zhanliang
    Dong, Junyu
    Liu, Xinguo
    Zeng, Xueying
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 4592 - 4600
  • [9] Logarithmic Norm Regularized Low-Rank Factorization for Matrix and Tensor Completion
    Chen, Lin
    Jiang, Xue
    Liu, Xingzhao
    Zhou, Zhixin
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 3434 - 3449
  • [10] Matrix factorization for low-rank tensor completion using framelet prior
    Jiang, Tai-Xiang
    Huang, Ting-Zhu
    Zhao, Xi-Le
    Ji, Teng-Yu
    Deng, Liang-Jian
    INFORMATION SCIENCES, 2018, 436 : 403 - 417