On the propagation of regularities in solutions of the Benjamin-Ono equation

被引:23
|
作者
Isaza, Pedro [1 ]
Linares, Felipe [2 ]
Ponce, Gustavo [3 ]
机构
[1] Univ Nacl Colombia, Dept Matemat, Medellin 3840, Colombia
[2] IMPA, BR-22460320 Rio De Janeiro, RJ, Brazil
[3] Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
关键词
Benjamin-Ono equation; Weighted Sobolev spaces; GLOBAL WELL-POSEDNESS; CAUCHY-PROBLEM;
D O I
10.1016/j.jfa.2015.11.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We shall deduce some special regularity properties of solutions to the IVP associated to the Benjamin-Ono equation. Mainly, for datum u(0) is an element of H-3/2(R) whose restriction belongs to H-m((b, infinity)) for some m is an element of Z(+), m >= 2, and b is an element of R we shall prove that the restriction of the corresponding solution u(., t) belongs to H-m ((beta, infinity)) for any beta is an element of R and any t > 0. Therefore, this type of regularity of the datum travels with infinite speed to its left as time evolves. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:976 / 1000
页数:25
相关论文
共 50 条
  • [1] ON THE PROPAGATION OF REGULARITY FOR SOLUTIONS OF THE DISPERSION GENERALIZED BENJAMIN-ONO EQUATION
    Mendez, Argenis J.
    ANALYSIS & PDE, 2020, 13 (08): : 2399 - 2440
  • [2] MEROMORPHIC SOLUTIONS OF THE BENJAMIN-ONO EQUATION
    CASE, KM
    PHYSICA A, 1979, 96 (1-2): : 173 - 182
  • [3] ON THE ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO THE BENJAMIN-ONO EQUATION
    Munoz, Claudio
    Ponce, Gustavo
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (12) : 5303 - 5312
  • [4] ON THE EXACT SOLUTIONS AND CONSERVATION LAWS TO THE BENJAMIN-ONO EQUATION
    Kaplan, Melike
    San, Sait
    Bekir, Ahmet
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2018, 8 (01): : 1 - 9
  • [5] Complex-valued solutions of the Benjamin-Ono equation
    Ionescu, Alexandru. D.
    Kenig, Carlos E.
    HARMONIC ANALYSIS, PARTIAL DIFFERENTIAL EQUATIONS, AND RELATED TOPICS, 2007, 428 : 61 - +
  • [6] Nonlocal symmetries and interaction solutions of the Benjamin-Ono equation
    Li, Yueyue
    Hu, Hengchun
    APPLIED MATHEMATICS LETTERS, 2018, 75 : 18 - 23
  • [7] On local energy decay for solutions of the Benjamin-Ono equation
    Freire, Ricardo
    Linares, Felipe
    Munoz, Claudio
    Ponce, Gustavo
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2024, 41 (03): : 725 - 747
  • [8] On the stochastic Benjamin-Ono equation
    Kim, Jong Uhn
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 228 (02) : 737 - 768
  • [9] On a perturbation of the Benjamin-Ono equation
    Pastran, Ricardo A.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 93 : 273 - 296
  • [10] PROPERTIES OF THE BENJAMIN-ONO EQUATION
    CASE, KM
    JOURNAL OF MATHEMATICAL PHYSICS, 1979, 20 (05) : 972 - 977