Anionic Polymerization of an Amphiphilic Copolymer for Preparation of Block Copolymer Micelles Stabilized by π-π Stacking Interactions

被引:1
|
作者
Le Devedec, Frantz [1 ]
Houdaihed, Loujin [1 ]
Allen, Christine [1 ]
机构
[1] Univ Toronto, Leslie Dan Fac Pharm, Toronto, ON M5S 1A1, Canada
来源
基金
加拿大自然科学与工程研究理事会;
关键词
Chemistry; Issue; 116; anionic polymerization; block copolymer micelles; phenyl glycidyl ether; doxorubicin; drug delivery; pi-pi stacking interactions; ETHYLENE-OXIDE; DIBLOCK COPOLYMER; DRUG-DELIVERY; RECOVERABLE CATALYSTS; POLY(ETHYLENE OXIDE); ANTICANCER AGENT; PEG-PCL; SOLUBILIZATION; MICELLIZATION; DOXORUBICIN;
D O I
10.3791/54422
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this study, an amphiphilic copolymer that includes a core-forming block with phenyl groups was synthesized by living anionic polymerization of phenyl glycidyl ether (PheGE) on methoxy-polyethylene glycol (mPEG-b-PPheGE). Characterization of the copolymer revealed a narrow molecular distribution (PDI < 1.03) and confirmed the degree of polymerization of mPEG(122)-b-(PheGE)(15). The critical micelle concentration of the copolymer was evaluated using an established fluorescence method with the aggregation behavior evaluated by dynamic light scattering and transmission electronic microscopy. The potential of the copolymer for use in drug delivery applications was evaluated in a preliminary manner including in vitro biocompatibility, loading and release of the hydrophobic anti-cancer drug doxorubicin (DOX). A stable micelle formulation of DOX was prepared with drug loading levels up to 14% (wt%), drug loading efficiencies > 60% (w/w) and sustained release of drug over 4 days under physiologically relevant conditions (acidic and neutral pH, presence of albumin). The high drug loading level and sustained release is attributed to stabilizing pi-pi interactions between DOX and the core-forming block of the micelles.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] The Morphological Study of Amphiphilic Block Copolymer Micelles
    Mei Aixiong
    Yang Yong
    Xu Junting
    Du Binyang
    PROGRESS IN CHEMISTRY, 2009, 21 (10) : 2188 - 2198
  • [2] Interaction of amphiphilic block copolymer micelles with surfactants
    Sastry, NV
    Hoffmann, H
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2004, 250 (1-3) : 247 - 261
  • [3] Amphiphilic Block Copolymer Micelles for Gene Delivery
    Li Qin
    Jin Bixin
    Luo Yunjun
    Li Xiaoyu
    CHEMICAL RESEARCH IN CHINESE UNIVERSITIES, 2022, 38 (06) : 1368 - 1379
  • [4] Amphiphilic Block Copolymer Micelles for Gene Delivery
    Qin Li
    Bixin Jin
    Yunjun Luo
    Xiaoyu Li
    Chemical Research in Chinese Universities, 2022, 38 : 1368 - 1379
  • [5] Amphiphilic Block Copolymer Micelles for Medical Materials
    He Wen
    Ding Yuanju
    Lu Zaijun
    Yang Qifeng
    PROGRESS IN CHEMISTRY, 2011, 23 (05) : 930 - 940
  • [6] Controlled stacking of charged block copolymer micelles
    Li, Zhibin
    Chen, Zhiyun
    Cui, Honggang
    Hales, Kelly
    Wooley, Karen L.
    Pochan, Darrin J.
    LANGMUIR, 2007, 23 (09) : 4689 - 4694
  • [7] Block copolymer micelles as seed in emulsion polymerization
    Rager, T
    Meyer, WH
    Wegner, G
    Mathauer, K
    Mächtle, W
    Schrof, W
    Urban, D
    MACROMOLECULAR CHEMISTRY AND PHYSICS, 1999, 200 (07) : 1681 - 1691
  • [8] Biocatalytic synthesis of polypyrrole in amphiphilic block copolymer micelles
    Nagarajan, Subhalakshmi
    Bruno, Ferdinando F.
    Drew, Christopher P.
    Nagarajan, Ramanathan
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 242
  • [9] Amphiphilic block copolymer micelles for nanoscale drug delivery
    Kwon, GS
    Forrest, ML
    DRUG DEVELOPMENT RESEARCH, 2006, 67 (01) : 15 - 22
  • [10] Amphiphilic block copolymer micelles with hydrophobically modified shells
    Jelínek, K
    Uhlík, F
    Limpouchová, Z
    Matejícek, P
    Procházka, K
    Tuzar, Z
    Spírková, M
    Hof, M
    MOLECULAR SIMULATION, 2003, 29 (10-11) : 655 - 660