MULTIVARIATE REGRESSION AND MACHINE LEARNING WITH SUMS OF SEPARABLE FUNCTIONS

被引:70
|
作者
Beylkin, Gregory [1 ]
Garcke, Jochen [2 ]
Mohlenkamp, Martin J. [3 ]
机构
[1] Univ Colorado, Dept Appl Math, Boulder, CO 80309 USA
[2] Tech Univ Berlin, Inst Math, D-10623 Berlin, Germany
[3] Ohio Univ, Dept Math, Athens, OH 45701 USA
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2009年 / 31卷 / 03期
关键词
multivariate regression; machine learning; curse of dimensionality; separation of variables; SPARSE GRIDS; APPROXIMATION; ALGORITHMS; DIMENSIONS;
D O I
10.1137/070710524
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present an algorithm for learning (or estimating) a function of many variables from scattered data. The function is approximated by a sum of separable functions, following the paradigm of separated representations. The central fitting algorithm is linear in both the number of data points and the number of variables and, thus, is suitable for large data sets in high dimensions. We present numerical evidence for the utility of these representations. In particular, we show that our method outperforms other methods on several benchmark data sets.
引用
收藏
页码:1840 / 1857
页数:18
相关论文
共 50 条
  • [1] LEARNING TO PREDICT PHYSICAL PROPERTIES USING SUMS OF SEPARABLE FUNCTIONS
    d'Avezac, Mayeul
    Botts, Ryan
    Mohlenkamp, Martin J.
    Zunger, Alex
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (06): : 3381 - 3401
  • [2] Classification with Sums of Separable Functions
    Garcke, Jochen
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PT I: EUROPEAN CONFERENCE, ECML PKDD 2010, 2010, 6321 : 458 - 473
  • [3] Trigonometric identities and sums of separable functions
    Mohlenkamp, MJ
    Monzón, L
    MATHEMATICAL INTELLIGENCER, 2005, 27 (02): : 65 - 69
  • [4] Trigonometric identities and sums of separable functions
    Martin J. Mohlenkamp
    Lucas Monzón
    The Mathematical Intelligencer, 2005, 27 : 65 - 69
  • [5] Representation of multivariate functions by sums of ridge functions
    Ismailov, Vugar E.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 331 (01) : 184 - 190
  • [6] On the Choice of Regression Basis Functions and Machine Learning
    S. M. Ermakov
    S. N. Leora
    Vestnik St. Petersburg University, Mathematics, 2022, 55 : 7 - 15
  • [7] On the Choice of Regression Basis Functions and Machine Learning
    Ermakov, S. M.
    Leora, S. N.
    VESTNIK ST PETERSBURG UNIVERSITY-MATHEMATICS, 2022, 55 (01) : 7 - 15
  • [8] NOTE ON MULTIVARIATE RISK AND SEPARABLE UTILITY FUNCTIONS
    ENGELBRECHT, R
    MANAGEMENT SCIENCE, 1977, 23 (10) : 1143 - 1144
  • [9] Multivariate Newton Sums: Identities and generating functions
    Briand, E
    Gonzalez-Vega, L
    COMMUNICATIONS IN ALGEBRA, 2002, 30 (09) : 4527 - 4547
  • [10] Machine Learning Multivariate Regression Model for Prediction of Heat Gain in Refrigerator Compartment
    Bhat, Prashant
    Shukla, Anshu
    Jain, Bhargav
    Sahoo, Satyanjay
    Shastri, Sunil S.
    Marathe, Vishal S.
    2019 5TH INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION, CONTROL AND AUTOMATION (ICCUBEA), 2019,