Visual tracking based on hierarchical framework and sparse representation

被引:5
|
作者
Yi, Yang [1 ,2 ,3 ]
Cheng, Yang [1 ]
Xu, Chuping [1 ]
机构
[1] Sun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou 510006, Guangdong, Peoples R China
[2] Sun Yat Sen Univ, Xinhua Coll, Guangzhou 510520, Guangdong, Peoples R China
[3] Guangdong Prov Key Lab Big Data Anal & Proc, Guangzhou, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Visual Target Tracking; Hierarchical Framework; Sparse Representation; Dictionary learning; Template Update; DATA ASSOCIATION; OBJECT TRACKING; MODEL;
D O I
10.1007/s11042-017-5198-4
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
As the main challenge for object tracking is to account for drastic appearance change, a hierarchical framework that exploits the strength of both generative and discriminative models is devised in this paper. Our hierarchical framework consists of three appearance models: local-histogram-based model, weighted alignment pooling model, and sparsity-based discriminative model. Sparse representation is adopted in local-histogram-based model layer that considers the spatial information among local patches with a dual-threshold update schema to deal with occlusion. The weighted alignment pooling layer is introduced to weight the local image patches of the candidates after sparse representation. Different from the above two generative methods, the global discriminant model layer employs candidates to sparsely represent positive and negative templates. After that, an effective hierarchical fusion strategy is developed to fuse the three models via their similarities and the confidence. In addition, three reasonable online dictionary and template update strategies are proposed. Finally, experiments on various current popular image sequences demonstrate that our proposed tracker performs favorably against several state-of-the-art algorithms.
引用
收藏
页码:16267 / 16289
页数:23
相关论文
共 50 条
  • [1] Visual tracking based on hierarchical framework and sparse representation
    Yang Yi
    Yang Cheng
    Chuping Xu
    Multimedia Tools and Applications, 2018, 77 : 16267 - 16289
  • [2] Visual tracking based on the sparse representation of the PCA subspace
    Chen D.-B.
    Zhu M.
    Wang H.-L.
    Optoelectronics Letters, 2017, 13 (05) : 392 - 396
  • [3] Visual tracking based on the sparse representation of the PCA subspace
    陈典兵
    朱明
    王慧利
    OptoelectronicsLetters, 2017, 13 (05) : 392 - 396
  • [4] Weighted Joint Sparse Representation Based Visual Tracking
    Duan, Xiping
    Liu, Jiafeng
    Tang, Xianglong
    NEURAL INFORMATION PROCESSING, PT III, 2015, 9491 : 600 - 609
  • [5] Visual Tracking Using Sparse Representation
    Feghahati, Amir H.
    Jourabloo, Amin
    Jamzad, Mansour
    Manzuri-Shalmani, Mohammad T.
    2012 IEEE INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND INFORMATION TECHNOLOGY (ISSPIT), 2012, : 304 - 309
  • [6] Robust visual tracking algorithm based on bidirectional sparse representation
    Wang Bao-Xian
    Zhao Bao-Jun
    Tang Lin-Bo
    Wang Shui-Gen
    Wu Jing-Hui
    ACTA PHYSICA SINICA, 2014, 63 (23) : 234201
  • [7] Robust Visual Tracking Based on Gabor Feature and Sparse Representation
    Li, Weiguang
    Hou, Yueen
    Lou, Huidong
    Ye, Guoqiang
    2012 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO 2012), 2012,
  • [8] Robust visual tracking based on structured sparse representation model
    Zhang, Hanling
    Tao, Fei
    Yang, Gaobo
    MULTIMEDIA TOOLS AND APPLICATIONS, 2015, 74 (03) : 1021 - 1043
  • [9] Robust visual tracking based on online learning sparse representation
    Zhang, Shengping
    Yao, Hongxun
    Zhou, Huiyu
    Sun, Xin
    Liu, Shaohui
    NEUROCOMPUTING, 2013, 100 : 31 - 40
  • [10] Visual Tracking Based on Extreme Learning Machine and Sparse Representation
    Wang, Baoxian
    Tang, Linbo
    Yang, Jinglin
    Zhao, Baojun
    Wang, Shuigen
    SENSORS, 2015, 15 (10) : 26877 - 26905