Convergence rate of the vanishing viscosity limit for the Hunter-Saxton equation in the half space

被引:1
|
作者
Peng, Lei [1 ]
Li, Jingyu [1 ]
Mei, Ming [2 ,3 ]
Zhang, Kaijun [1 ]
机构
[1] Northeast Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R China
[2] Champlain Coll St Lambert, Dept Math, St Lambert, PQ J4P 3P2, Canada
[3] McGill Univ, Dept Math & Stat, Montreal, PQ H3A 2K6, Canada
基金
中国国家自然科学基金; 加拿大自然科学与工程研究理事会;
关键词
Hunter-Saxton equation; Asymptotic analysis; Boundary layer; Well-posedness; Energy method; Vanishing viscosity limit; NAVIER-STOKES EQUATIONS; HYPERBOLIC VARIATIONAL EQUATION; BOUNDARY-LAYERS; ZERO-VISCOSITY; ASYMPTOTIC EQUATION; GLOBAL EXISTENCE; ANALYTIC SOLUTIONS; WEAK SOLUTIONS; UNIQUENESS; PERTURBATIONS;
D O I
10.1016/j.jde.2022.04.032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the asymptotic behavior of the solutions to an initial boundary value problem of the Hunter-Saxton equation in the half space when the viscosity tends to zero. By means of the asymptotic analysis with multiple scales, we first formally derive the equations for boundary layer profiles. Next, we study the well-posedness of the equations for the boundary layer profiles by using the compactness argu-ment. Moreover, we construct an accurate approximate solution and use the energy method to obtain the convergence results of the vanishing viscosity limit.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:202 / 227
页数:26
相关论文
共 50 条
  • [1] Characteristic boundary layers in the vanishing viscosity limit for the Hunter-Saxton equation
    Peng, Lei
    Li, Jingyu
    Mei, Ming
    Zhang, Kaijun
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 386 : 164 - 195
  • [2] Global existence of dissipative solutions to the Hunter-Saxton equation via vanishing viscosity
    Li, Jingyu
    Zhang, Kaijun
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 250 (03) : 1427 - 1447
  • [3] The Hunter-Saxton equation with noise
    Holden, Helge
    Karlsen, Kenneth H.
    Pang, Peter H. C.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 270 : 725 - 786
  • [4] The modified Hunter-Saxton equation
    Gorka, Przemyslaw
    Reyes, Enrique G.
    JOURNAL OF GEOMETRY AND PHYSICS, 2012, 62 (08) : 1793 - 1809
  • [5] GENERALIZED CHARACTERISTICS AND THE HUNTER-SAXTON EQUATION
    Dafermos, Constantine M.
    JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2011, 8 (01) : 159 - 168
  • [6] Lipschitz stability for the Hunter-Saxton equation
    Grunert, Katrin
    Tandy, Matthew
    JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2022, 19 (02) : 275 - 310
  • [7] A Lipschitz metric for the Hunter-Saxton equation
    Carrillo, Jose Antonio
    Grunert, Katrin
    Holden, Helge
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2019, 44 (04) : 309 - 334
  • [8] Global solutions of the Hunter-Saxton equation
    Bressan, A
    Constantin, A
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2005, 37 (03) : 996 - 1026
  • [9] Lipschitz metric for the Hunter-Saxton equation
    Bressan, Alberto
    Holden, Helge
    Raynaud, Xavier
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2010, 94 (01): : 68 - 92
  • [10] The Integrability of Dispersive Hunter-Saxton Equation
    Fei Mingwen
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2012, 25 (04): : 330 - 334