Variational inequalities for generalized quasi-monotone maps

被引:2
|
作者
Kang, MK [1 ]
Lee, BS
机构
[1] Dong Eui Univ, Dept Math, Pusan 614714, South Korea
[2] Kyungsung Univ, Dept Math, Pusan 608736, South Korea
关键词
M-eta-quasimonotone; eta-quasimonotone; M-eta-monotone; eta-monotone; variational inequality problem; KKM-Fan theorem; inner points;
D O I
10.1016/j.aml.2004.01.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce a generalized quasi-monotone map and consider existence of solutions to generalized variational inequality problems for generalized quasi-monotone maps. Our result generalizes some theorems in [1]. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:889 / 896
页数:8
相关论文
共 50 条
  • [1] The extragradient method for quasi-monotone variational inequalities
    Salahuddin
    OPTIMIZATION, 2022, 71 (09) : 2519 - 2528
  • [2] ON STRICTLY QUASI-MONOTONE OPERATORS AND VARIATIONAL INEQUALITIES
    Chen, Yu-Qing
    Cho, Yeol Je
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2007, 8 (03) : 391 - 396
  • [3] New approximation methods for solving quasi-monotone variational inequalities
    Djafari-Rouhani, Behzad
    Mohebbi, Vahid
    OPTIMIZATION, 2024,
  • [4] Non-compact generalized variational inequalities for quasi-monotone and hemi-continuous operators with applications
    M. S. R. Chowdhury
    E. Tarafdar
    H. B. Thompson
    Acta Mathematica Hungarica, 2003, 99 : 105 - 122
  • [5] Non-compact generalized variational inequalities for quasi-monotone and hemi-continuous operators with applications
    Chowdhury, MSR
    Tarafdar, E
    Thompson, HB
    ACTA MATHEMATICA HUNGARICA, 2003, 99 (1-2) : 105 - 122
  • [6] Modified accelerated Bregman projection methods for solving quasi-monotone variational inequalities
    Wang, Zhong-bao
    Sunthrayuth, Pongsakorn
    Adamu, Abubakar
    Cholamjiak, Prasit
    OPTIMIZATION, 2024, 73 (07) : 2053 - 2087
  • [7] Weighted inequalities for quasi-monotone functions
    Maligranda, L
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1998, 57 : 363 - 370
  • [8] Projection and contraction method with double inertial steps for quasi-monotone variational inequalities
    Li, Haiying
    Wang, Xingfang
    Wang, Fenghui
    OPTIMIZATION, 2024,
  • [9] Subgradient extragradient method with double inertial steps for quasi-monotone variational inequalities
    Li, Haiying
    Wang, Xingfang
    FILOMAT, 2023, 37 (29) : 9823 - 9844
  • [10] ON FIXED POINT ITERATIVE METHODS FOR SOLVING NON-LIPSCHITZ QUASI-MONOTONE VARIATIONAL INEQUALITIES
    Mewomo, O.T.
    Nwokoye, R.N.
    Alakoyo, T.O.
    Ogwo, G.N.
    Journal of Applied and Numerical Optimization, 2024, 6 (03): : 429 - 446