Optical and physical properties of hydrocarbons with metal impurities in the warm dense matter regime

被引:0
|
作者
Cao, Yu [1 ]
Chu, Yanyun [1 ]
Wang, Zhen [1 ]
Qi, Jianmin [1 ]
Zhou, Lin [1 ]
Li, Zhenghong [1 ]
机构
[1] China Acad Engn Phys, Inst Nucl Phys & Chem, Mianyang 621900, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
AB-INITIO; MOLECULAR-DYNAMICS; POLYSTYRENE; HOT;
D O I
10.1063/5.0033776
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The hydrocarbon (CH) polymer is often chosen as the converter material with potential applications to Z-pinch driven dynamic hohlraum implosion experiments. Its physical and optical properties in the warm dense matter regime are important for dynamic hohlraum platform designs. Using the quantum molecular dynamics (QMD) method, we have obtained the equation of state, absorption coefficient, and reflectivity of hydrocarbon and Al-CH mixtures with the temperature and density ranging from 10(4)-10(6) K and 0.1-0.9 g/cm(3), respectively. The QMD-predicted principal Hugoniot data are compared with experiments as well as the theoretical calculations, and both show good agreement. The optical reflectivity from the corresponding dielectric functions is calculated using the corrected refraction index of the ambient (n(0)=1.59). Besides, we have further analyzed the atomic structure and bond dissociation process of polystyrene and Al-CH mixture systems using a bond tracking method with the temperature ranging from 1000K to 10000K. The Al impurities have a slightly promoting effect on the initial stage of polystyrene pyrolysis. The calculation results can be helpful for future theoretical and experimental studies in high energy density physics research.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Effects of metal impurities on the optical properties of polyethylene in the warm dense-matter regime
    Horner, D. A.
    Kress, J. D.
    Collins, L. A.
    PHYSICAL REVIEW B, 2010, 81 (21):
  • [2] Equation of state and transport properties of metals in warm dense matter regime
    Khomkin, A. L.
    Shumikhin, A. S.
    CONTRIBUTIONS TO PLASMA PHYSICS, 2018, 58 (2-3) : 143 - 149
  • [3] Thermionic emission of electrons from metal surfaces in the warm dense matter regime
    Petrov, G. M.
    Davidson, A.
    Gordon, D.
    Hafizi, B.
    Penano, J.
    PHYSICS OF PLASMAS, 2021, 28 (08)
  • [4] MIXING RULES FOR OPTICAL AND TRANSPORT PROPERTIES OF WARM, DENSE MATTER
    Kress, J. D.
    Horner, D. A.
    Collins, L. A.
    SHOCK COMPRESSION OF CONDENSED MATTER - 2009, PTS 1 AND 2, 2009, 1195 : 931 - 934
  • [5] Equation of state for aluminum in warm dense matter regime
    王坤
    张董
    史宗谦
    石元杰
    王天浩
    张阅
    Chinese Physics B, 2019, 28 (01) : 511 - 517
  • [6] Multicomponent mutual diffusion in the warm, dense matter regime
    Ticknor, C.
    Meyer, E. R.
    White, A. J.
    Kress, J. D.
    Collins, L. A.
    PHYSICS OF PLASMAS, 2022, 29 (11)
  • [7] Equation of state for aluminum in warm dense matter regime
    Wang, Kun
    Zhang, Dong
    Shi, Zong-Qian
    Shi, Yuan-Jie
    Wang, Tian-Hao
    Zhang, Yue
    CHINESE PHYSICS B, 2019, 28 (01)
  • [8] Interatomic Potential in the Nonequilibrium Warm Dense Matter Regime
    Chen, Z.
    Mo, M.
    Soulard, L.
    Recoules, V.
    Hering, P.
    Tsui, Y. Y.
    Glenzer, S. H.
    Ng, A.
    PHYSICAL REVIEW LETTERS, 2018, 121 (07)
  • [9] Multicomponent mutual diffusion in the warm, dense matter regime
    White, A. J.
    Ticknor, C.
    Meyer, E. R.
    Kress, J. D.
    Collins, L. A.
    PHYSICAL REVIEW E, 2019, 100 (03)
  • [10] RESEOS - A model of thermodynamic and optical properties of hot and warm dense matter
    Ovechkin, A. A.
    Loboda, P. A.
    Novikov, V. G.
    Grushin, A. S.
    Solomyannaya, A. D.
    HIGH ENERGY DENSITY PHYSICS, 2014, 13 : 20 - 33