Singular operators in multiwavelet bases

被引:31
|
作者
Fann, G [1 ]
Beylkin, G
Harrison, RJ
Jordan, KE
机构
[1] Univ Colorado, Dept Math Appl, Boulder, CO 80309 USA
[2] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
[3] Univ Tennessee, Knoxville, TN USA
[4] IBM Corp, Life Sci Solut, Cambridge, MA 02142 USA
关键词
D O I
10.1147/rd.482.0161
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We review some recent results on multiwavelet methods for solving integral and partial differential equations and present an efficient representation of operators using discontinuous multiwavelet bases, including the case for singular integral operators. Numerical calculus using these representations produces fast O(N) methods for multiscale solution of integral equations when combined with low separation rank methods. Using this formulation, we compute the Hilbert transform and solve the Poisson and Schrodinger equations. For a fixed order of multiwavelets and for arbitrary but finite-precision computations, the computational complexity is O(N). The computational structures are similar to fast multipole methods but are more generic in yielding fast O(N) algorithm development.
引用
收藏
页码:161 / 171
页数:11
相关论文
共 50 条
  • [1] Riesz multiwavelet bases
    Han, B
    Kwon, SG
    Park, SS
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2006, 20 (02) : 161 - 183
  • [2] Oblique multiwavelet bases
    Aldroubi, A
    WAVELET THEORY AND HARMONIC ANALYSIS IN APPLIED SCIENCES, 1997, : 73 - 91
  • [3] Oblique multiwavelet bases: Examples
    Aldroubi, A
    WAVELET APPLICATIONS IN SIGNAL AND IMAGE PROCESSING IV, PTS 1 AND 2, 1996, 2825 : 54 - 64
  • [4] Construction of Orthogonal Multiwavelet Bases
    Pleshcheva, E. A.
    Chernykh, N. I.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2015, 288 : S162 - S172
  • [5] Oblique and hierarchical multiwavelet bases
    Aldroubi, A
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1997, 4 (03) : 231 - 263
  • [6] Construction of orthogonal multiwavelet bases
    Pleshcheva, E. A.
    Chernykh, N. I.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2014, 20 (01): : 221 - 230
  • [7] Construction of orthogonal multiwavelet bases
    E. A. Pleshcheva
    N. I. Chernykh
    Proceedings of the Steklov Institute of Mathematics, 2015, 288 : 162 - 172
  • [8] Multiresolution quantum chemistry in multiwavelet bases
    Harrison, RJ
    Fann, GI
    Yanai, T
    Beylkin, G
    COMPUTATIONAL SCIENCE - ICCS 2003, PT IV, PROCEEDINGS, 2003, 2660 : 103 - 110
  • [9] Multiwavelet bases with extra approximation properties
    Selesnick, IW
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1998, 46 (11) : 2898 - 2908
  • [10] Interpolating multiwavelet bases and the sampling theorem
    Selesnick, IW
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1999, 47 (06) : 1615 - 1621