best linear unbiased predictor;
maximum likelihood;
mean-squared error;
multivariate mixed linear model;
small area;
MIXED LINEAR-MODELS;
PREDICTION;
D O I:
10.1080/02331880802605304
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
This work deals with estimating the vector of means of certain characteristics of small areas. In this context, a unit level multivariate model with correlated sampling errors is considered. An approximation is obtained for the mean-squared and cross-product errors of the empirical best linear unbiased predictors of the means, when model parameters are estimated either by maximum likelihood (ML) or by restricted ML. This approach has been implemented on a Monte Carlo study using social and labour data from the Spanish Labour Force Survey.
机构:
Univ Santiago de Compostela, Dept Estadist & Invest Operat, Santiago De Compostela, SpainUniv Santiago de Compostela, Dept Estadist & Invest Operat, Santiago De Compostela, Spain
Gonzalez-Manteiga, W.
Lombardia, M. J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Santiago de Compostela, Dept Estadist & Invest Operat, Santiago De Compostela, SpainUniv Santiago de Compostela, Dept Estadist & Invest Operat, Santiago De Compostela, Spain
Lombardia, M. J.
Molina, I.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Carlos III Madrid, Dept Estadist & Econometria, E-28903 Getafe, SpainUniv Santiago de Compostela, Dept Estadist & Invest Operat, Santiago De Compostela, Spain
Molina, I.
Morales, D.
论文数: 0引用数: 0
h-index: 0
机构:Univ Santiago de Compostela, Dept Estadist & Invest Operat, Santiago De Compostela, Spain
Morales, D.
Santamaria, L.
论文数: 0引用数: 0
h-index: 0
机构:Univ Santiago de Compostela, Dept Estadist & Invest Operat, Santiago De Compostela, Spain
机构:
United Nations Int Childrens Fund UNICEF, Data & Analyt, New York, NY 10017 USAUnited Nations Int Childrens Fund UNICEF, Data & Analyt, New York, NY 10017 USA
Diallo, Mamadou S.
Rao, J. N. K.
论文数: 0引用数: 0
h-index: 0
机构:
Carleton Univ, Sch Math & Stat, Ottawa, ON, CanadaUnited Nations Int Childrens Fund UNICEF, Data & Analyt, New York, NY 10017 USA