A GAUSSIAN UPPER BOUND OF THE CONJUGATE HEAT EQUATION ALONG RICCI-HARMONIC FLOW

被引:3
|
作者
Liu, Xian-Gao [1 ]
Wang, Kui [2 ]
机构
[1] Fudan Univ, Inst Math, Shanghai 200433, Peoples R China
[2] Soochow Univ, Sch Math Sci, Suzhou 215006, Peoples R China
基金
中国博士后科学基金;
关键词
Ricci-harmonic flow; Sobolev inequality; Gaussian upper bound; SOBOLEV INEQUALITIES;
D O I
10.2140/pjm.2017.287.465
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We mainly study the Ricci-harmonic flow. Using the monotonicity formulae of entropies, we show a uniform Sobolev inequality along Ricci-harmonic flow. Furthermore, we obtain a Gaussian upper bound for the fundamental solutions of the conjugate heat equation via Moser iteration and Sobolev inequality.
引用
收藏
页码:465 / 484
页数:20
相关论文
共 50 条