NO-REFERENCE IMAGE QUALITY ASSESSMENT OF T2-WEIGHTED MAGNETIC RESONANCE IMAGES IN PROSTATE CANCER PATIENTS

被引:9
|
作者
Masoudi, Samira [1 ]
Harmon, Stephanie [1 ]
Mehralivand, Sherif [1 ]
Lay, Nathan [1 ]
Bagci, Ulas [2 ]
Wood, Bradford J. [1 ]
Pinto, Peter A. [1 ]
Choyke, Peter [1 ]
Turkbey, Baris [1 ]
机构
[1] NCI, NIH, Bethesda, MD 20892 USA
[2] Northwestern Univ, Dept Radiol, Chicago, IL 60611 USA
基金
美国国家卫生研究院;
关键词
no-reference image quality assessment; magnetic resonance imaging; generative adversarial network;
D O I
10.1109/ISBI48211.2021.9434027
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
No-reference image quality assessment in magnetic resonance (MR) imaging is a challenging task due to the variable nature of these images and lack of standard quantification methods, which makes the interpretation to be almost always subjective. In this study, we propose an architecture where we: (i) extended the no-reference image quality assessment problem of MRI into a full-reference image quality assessment using unpaired generative adversarial network (GAN) and (ii) employed a weakly-supervised trained deep classifier to determine the quality of MR images by comparing each image with its synthetic higher quality reference image. Using this approach, we achieved 11.28% improvement in the accuracy of our MR image quality assessment algorithm on an independent data test with FPR in detecting low quality images, reduced from 13% to 9.6%.
引用
收藏
页码:1201 / 1205
页数:5
相关论文
共 50 条
  • [1] Image quality and cancer visibility of T2-weighted Magnetic Resonance Imaging of the prostate at 7 Tesla
    E. K. Vos
    M. W. Lagemaat
    J. O. Barentsz
    J. J. Fütterer
    P. Zámecnik
    H. Roozen
    S. Orzada
    A. K. Bitz
    M. C. Maas
    T. W. J. Scheenen
    European Radiology, 2014, 24 : 1950 - 1958
  • [2] Image quality and cancer visibility of T2-weighted Magnetic Resonance Imaging of the prostate at 7 Tesla
    Vos, E. K.
    Lagemaat, M. W.
    Barentsz, J. O.
    Fuetterer, J. J.
    Zamecnik, P.
    Roozen, H.
    Orzada, S.
    Bitz, A. K.
    Maas, M. C.
    Scheenen, T. W. J.
    EUROPEAN RADIOLOGY, 2014, 24 (08) : 1950 - 1958
  • [3] A Brief Survey on No-Reference Image Quality Assessment Methods for Magnetic Resonance Images
    Stepien, Igor
    Oszust, Mariusz
    JOURNAL OF IMAGING, 2022, 8 (06)
  • [4] No-Reference Image Quality Assessment for Facial Images
    Bhattacharjee, Debalina
    Prakash, Surya
    Gupta, Phalguni
    ADVANCED INTELLIGENT COMPUTING THEORIES AND APPLICATIONS: WITH ASPECTS OF ARTIFICIAL INTELLIGENCE, 2012, 6839 : 594 - 601
  • [5] No-reference image quality assessment for dehazed images
    Ji, Bin
    Ji, Yunyun
    Gao, Han
    Hu, Xuedong
    Ding, Feng
    JOURNAL OF ELECTRONIC IMAGING, 2022, 31 (01)
  • [6] No-reference image quality assessment of magnetic resonance images with high-boost filtering and local features
    Oszust, Mariusz
    Piorkowski, Adam
    Obuchowicz, Rafal
    MAGNETIC RESONANCE IN MEDICINE, 2020, 84 (03) : 1648 - 1660
  • [7] Application of texture analysis based on T2-weighted magnetic resonance images in discriminating Gleason scores of prostate cancer
    Pan, Ruigen
    Yang, Xueli
    Shu, Zhenyu
    Gu, Yifeng
    Weng, Lihua
    Jia, Yuezhu
    Feng, Jianju
    JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY, 2020, 28 (06) : 1207 - 1218
  • [8] Assessment of T2-weighted Image Quality at Prostate MRI in Patients with and Those without Intramuscular Injection of Glucagon
    Sundaram, Karthik M.
    Rosenberg, Jarrett
    Syed, Ali B.
    Chang, Stephanie T.
    Loening, Andreas M.
    RADIOLOGY-IMAGING CANCER, 2023, 5 (03):
  • [9] No-Reference Image Quality Assessment for Contrast Distorted Images
    Zhu, Yiming
    Chen, Xianzhi
    Dai, Shengkui
    IMAGE AND GRAPHICS (ICIG 2021), PT III, 2021, 12890 : 241 - 252
  • [10] A No-Reference Image Quality Assessment Metric for Wood Images
    Rajagopal, Heshalini
    Mokhtar, Norrima
    Khairuddin, Anis Salwa Mohd
    Khairunizam, Wan
    Ibrahim, Zuwairie
    Bin Adam, Asrul
    Mahiyidin, Wan Amirul Bin Wan Mohd
    JOURNAL OF ROBOTICS NETWORKING AND ARTIFICIAL LIFE, 2021, 8 (02): : 127 - 133