Sharpened versions of the Schwarz Lemma

被引:29
|
作者
Mercer, PR
机构
[1] Dept. of Math. and Computer Science, St. Mary's College of Maryland, St. Mary's City
关键词
D O I
10.1006/jmaa.1997.5217
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a version of the Schwarz Lemma in which the images of two points are known. Two classical results (due to Dieudonne and Rogosinski) are simple corollaries. (C) 1997 Academic Press.
引用
收藏
页码:508 / 511
页数:4
相关论文
共 50 条
  • [1] SHARPENED FORMS OF THE SCHWARZ LEMMA ON THE BOUNDARY
    Ornek, Bulent Nafi
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2013, 50 (06) : 2053 - 2059
  • [2] Geometric versions of Schwarz's lemma and symmetrization
    Dubinin V.N.
    Journal of Mathematical Sciences, 2011, 178 (2) : 150 - 157
  • [3] HYPERBOLIC GEOMETRIC VERSIONS OF SCHWARZ'S LEMMA
    Betsakos, Dimitrios
    CONFORMAL GEOMETRY AND DYNAMICS, 2013, 17 : 119 - 132
  • [4] AREA, CAPACITY AND DIAMETER VERSIONS OF SCHWARZ'S LEMMA
    Burckel, Robert B.
    Marshall, Donald E.
    Minda, David
    Poggi-Corradini, Pietro
    Ransford, Thomas J.
    CONFORMAL GEOMETRY AND DYNAMICS, 2008, 12 : 133 - 152
  • [5] Versions of the Schwarz Lemma for Domain Moments and the Torsional Rigidity
    Abramov, D. A.
    Avkhadiev, F. G.
    Giniyatova, D. Kh.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2011, 32 (02) : 149 - 158
  • [6] GEOMETRIC VERSIONS OF SCHWARZ'S LEMMA FOR QUASIREGULAR MAPPINGS
    Betsakos, Dimitrios
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (04) : 1397 - 1407
  • [7] Versions of Schwarz's Lemma for Condenser Capacity and Inner Radius
    Betsakos, Dimitrios
    Pouliasis, Stamatis
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2013, 56 (02): : 241 - 250
  • [8] Geometric versions of Schwarz's lemma for spherically convex functions
    Kourou, Maria
    Roth, Oliver
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2023, 75 (06): : 1780 - 1799
  • [9] Schwarz Lemma and Boundary Schwarz Lemma for Pluriharmonic Mappings
    Zhu, Jian-Feng
    FILOMAT, 2018, 32 (15) : 5385 - 5402
  • [10] Some generalizations for the Schwarz-Pick lemma and boundary Schwarz lemma
    Cai, Fangming
    Rui, Jie
    Zhong, Deguang
    AIMS MATHEMATICS, 2023, 8 (12): : 30992 - 31007