Facile and scalable fabrication of polymer-ceramic composite electrolyte with high ceramic loadings

被引:70
|
作者
Pandian, Amaresh Samuthira [1 ]
Chen, X. Chelsea [1 ]
Chen, Jihua [2 ]
Lokitz, Bradley S. [2 ]
Ruther, Rose E. [3 ]
Yang, Guang [1 ]
Lou, Kun [4 ]
Nanda, Jagjit [1 ]
Delnick, Frank M. [1 ]
Dudney, Nancy J. [1 ]
机构
[1] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37830 USA
[2] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37830 USA
[3] Oak Ridge Natl Lab, Energy & Transportat Sci Div, Oak Ridge, TN 37830 USA
[4] Univ Tennessee, Bredesen Ctr Interdisciplinary Res & Grad Educ, Knoxville, TN 37996 USA
关键词
Composite electrolyte; Aqueous processing; Spray coating; Lithium ion conductivity; Solid state lithium battery; IONIC-CONDUCTIVITY; TRANSPORT-PROPERTIES; LITHIUM TRIFLATE; PLASTICIZERS; ENHANCEMENT; ASSOCIATION; INTERFACE; STABILITY; FTIR; SALT;
D O I
10.1016/j.jpowsour.2018.04.006
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solid state electrolytes are a promising alternative to flammable liquid electrolytes for high-energy lithium battery applications. In this work polymer-ceramic composite electrolyte membrane with high ceramic loading (greater than 60 vol%) is fabricated using a model polymer electrolyte poly(ethylene oxide) + lithium trifluoromethane sulfonate and a lithium-conducting ceramic powder. The effects of processing methods, choice of plasticizer and varying composition on ionic conductivity of the composite electrolyte are thoroughly investigated. The physical, structural and thermal properties of the composites are exhaustively characterized. We demonstrate that aqueous spray coating followed by hot pressing is a scalable and inexpensive technique to obtain composite membranes that are amazingly dense and uniform. The ionic conductivity of composites fabricated using this protocol is at least one order of magnitude higher than those made by dry milling and solution casting. The introduction of tetraethylene glycol dimethyl ether further increases the ionic conductivity. The composite electrolyte's interfacial compatibility with metallic lithium and good cyclability is verified by constructing lithium symmetrical cells. A remarkable Li+ transference number of 0.79 is discovered for the composite electrolyte.
引用
收藏
页码:153 / 164
页数:12
相关论文
共 50 条
  • [1] POLYMER-CERAMIC COMPOSITE ELECTROLYTES
    KUMAR, B
    SCANLON, LG
    JOURNAL OF POWER SOURCES, 1994, 52 (02) : 261 - 268
  • [2] Polymer-ceramic composite protonic conductors
    Kumar, B
    Fellner, JP
    JOURNAL OF POWER SOURCES, 2003, 123 (02) : 132 - 136
  • [4] Polymer-Ceramic Composite Gel Polymer Electrolyte for High-Electrochemical-Performance Lithium-Ion Batteries
    Jang, So-Hyun
    Kim, Jae-Kwang
    JOURNAL OF THE KOREAN ELECTROCHEMICAL SOCIETY, 2016, 19 (04): : 123 - 128
  • [5] DIELECTRIC AND PYROELECTRIC PROPERTIES OF POLYMER-CERAMIC COMPOSITE
    ABDULLAH, MJ
    DASGUPTA, DK
    FERROELECTRICS, 1987, 76 (3-4) : 393 - 401
  • [6] THERMOMECHANICAL STABILITY OF POLYMER-CERAMIC COMPOSITE MEMBRANES
    REZAC, ME
    KOROS, WJ
    MILLER, SJ
    SEPARATION SCIENCE AND TECHNOLOGY, 1995, 30 (10) : 2159 - 2171
  • [7] The use of polymer-ceramic composite films in photoenergy
    Rakhimov R.Kh.
    Muminov R.A.
    Ermakov V.P.
    Rakhimov M.R.
    Latipov R.N.
    Rakhimova A.G.
    Applied Solar Energy (English translation of Geliotekhnika), 2011, 47 (04): : 300 - 303
  • [8] High dielectric constant polymer-ceramic composite for embedded capacitor application
    Rao, Y
    Ogitani, S
    Kohl, P
    Wong, CP
    INTERNATIONAL SYMPOSIUM ON ADVANCED PACKAGING MATERIALS: PROCESSES, PROPERTIES AND INTERFACES, PROCEEDINGS, 2000, : 32 - 37
  • [9] Polymer-Ceramic Nanocomposites
    Pekcan, Onder
    Ugur, Saziye
    PHOTONIC MATERIALS, DEVICES, AND APPLICATIONS III, 2009, 7366
  • [10] Silica-treated ceramic substrates for formation of polymer-ceramic composite membranes
    Moaddeb, Maryam
    Koros, William J.
    Industrial and Engineering Chemistry Research, 1995, 34 (01): : 263 - 274