How short is short? Optimum source-detector distance for short-separation channels in functional near-infrared spectroscopy

被引:229
作者
Brigadoi, Sabrina [1 ]
Cooper, Robert J. [1 ]
机构
[1] UCL, Dept Med Phys & Biomed Engn, Biomed Opt Res Lab, Gower St, London WC1E 6BT, England
关键词
functional near-infrared spectroscopy; short-separation channel; source-detector distance; Monte Carlo simulations; HEMODYNAMIC-RESPONSE; TURBID MEDIA; HEAD MODELS; BRAIN; SCALP; SKULL; NIRS; INTERFERENCE; PROPAGATION; SIMULATION;
D O I
10.1117/1.NPh.2.2.025005
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
In recent years, it has been demonstrated that using functional near-infrared spectroscopy (fNIRS) channels with short separations to explicitly sample extra-cerebral tissues can provide a significant improvement in the accuracy and reliability of fNIRS measurements. The aim of these short-separation channels is to measure the same superficial hemodynamics observed by standard fNIRS channels while also being insensitive to the brain. We use Monte Carlo simulations of photon transport in anatomically informed multilayer models to determine the optimum source-detector distance for short-separation channels in adult and newborn populations. We present a look-up plot that provides (for an acceptable value of short-separation channel brain sensitivity relative to standard channel brain sensitivity) the optimum short-separation distance. Though values vary across the scalp, when the acceptable ratio of the short-separation channel brain sensitivity to standard channel brain sensitivity is set at 5%, the optimum short-separation distance is 8.4 mm in the typical adult and 2.15 mm in the term-age infant. (C) 2015 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:9
相关论文
共 39 条
[1]   A FINITE-ELEMENT APPROACH FOR MODELING PHOTON TRANSPORT IN TISSUE [J].
ARRIDGE, SR ;
SCHWEIGER, M ;
HIRAOKA, M ;
DELPY, DT .
MEDICAL PHYSICS, 1993, 20 (02) :299-309
[2]   A high resolution EEG method based on the correction of the surface Laplacian estimate for the subject's variable scalp thickness [J].
Babiloni, F ;
Babiloni, C ;
Carducci, F ;
DelGaudio, M ;
Onorati, P ;
Urbano, A .
ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY, 1997, 103 (04) :486-492
[3]  
Bade R, 2006, PROF SIM VIS, P289
[4]   The Developmental Trajectory of Brain-Scalp Distance from Birth through Childhood: Implications for Functional Neuroimaging [J].
Beauchamp, Michael S. ;
Beurlot, Michelle R. ;
Fava, Eswen ;
Nath, Audrey R. ;
Parikh, Nehal A. ;
Saad, Ziad S. ;
Bortfeld, Heather ;
Oghalai, John S. .
PLOS ONE, 2011, 6 (09)
[5]   In vivo local determination of tissue optical properties:: applications to human brain [J].
Bevilacqua, F ;
Piguet, D ;
Marquet, P ;
Gross, JD ;
Tromberg, BJ ;
Depeursinge, C .
APPLIED OPTICS, 1999, 38 (22) :4939-4950
[6]  
Boas D. A., 2009, IN VIVO OPTICAL IMAG
[7]   A 4D neonatal head model for diffuse optical imaging of pre-term to term infants [J].
Brigadoi, Sabrina ;
Aljabar, Paul ;
Kuklisova-Murgasova, Maria ;
Arridge, Simon R. ;
Cooper, Robert J. .
NEUROIMAGE, 2014, 100 :385-394
[8]   Near infrared technology in neuroscience: past, present and future [J].
Calderon-Arnulphi, Mateo ;
Alaraj, Ali ;
Slavin, Konstantin V. .
NEUROLOGICAL RESEARCH, 2009, 31 (06) :605-614
[9]   Effective scattering coefficient of the cerebral spinal fluid in adult head models for diffuse optical imaging [J].
Custo, Anna ;
Wells, William M., III ;
Barnett, Alex H. ;
Hillman, Elizabeth M. C. ;
Boas, David A. .
APPLIED OPTICS, 2006, 45 (19) :4747-4755
[10]   Quantitative effect of the neonatal fontanel on synthetic near infrared spectroscopy measurements [J].
Dehaes, Mathieu ;
Kazemi, Kamran ;
Pelegrini-Issac, Melanie ;
Grebe, Reinhard ;
Benali, Habib ;
Wallois, Fabrice .
HUMAN BRAIN MAPPING, 2013, 34 (04) :878-889