Mid-IR InAsSb photovoltaic detectors

被引:1
|
作者
Rakovska, A [1 ]
Berger, V [1 ]
Marcadet, X [1 ]
Glastre, G [1 ]
Vinter, B [1 ]
Bouzehouane, K [1 ]
Kaplan, D [1 ]
Oksehendler, T [1 ]
机构
[1] Thomson CSF, Cent Rech Lab, F-91404 Orsay, France
来源
关键词
InAsSb; IR-detector; lifetime; GaSb; MBE;
D O I
10.1117/12.382144
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
We describe a mid-IR photovoltaic detector using InAsSb as active material, grown by MBE on a GaSb substrate. The purpose of this study is to show that quantum detectors can offer an alternative to thermal detectors (pyroelectric or resistive bolometers) for high temperature (near room temperature) operation. With a 9% Sb content, InAsSb is lattice matched to GaSb and thus provides an excellent material quality, with Shokley-Read lifetimes of the order of 200 ns as measured by photoconductive gain measurements as well as time resolved photoconductivity experiments. The band gap of InAsSb corresponds to a wavelength of 5 microns at room temperature. This makes InAsSb an ideal candidate for room temperature detection in the 3-5 microns atmospheric window. Photovoltaic structures are characterized by current voltage characteristics as a function of temperature. Using the absorption value obtained on the test samples, a detectivity of 7X10(9) Jones can be obtained at a temperature of 250 K, which can easily be reached with Peltier cooling. This leads to a NETD lower than 80 mK.
引用
收藏
页码:55 / 62
页数:8
相关论文
共 50 条
  • [1] PbTe photovoltaic mid-IR detectors
    Wei X.-D.
    Cai C.-F.
    Zhang B.-P.
    Hu L.
    Wu H.-Z.
    Zhang Y.-G.
    Feng J.-W.
    Lin J.-M.
    Lin C.
    Fang W.-Z.
    Dai N.
    Hongwai Yu Haomibo Xuebao/Journal of Infrared and Millimeter Waves, 2011, 30 (04): : 293 - 296
  • [2] PbTe photovoltaic mid-IR detectors
    Wei Xiao-Dong
    Cai Chun-Feng
    Zhang Bing-Po
    Hu Lian
    Wu Hui-Zhen
    Zhang Yong-Gang
    Feng Jing-Wen
    Lin Jia-Mu
    Lin Chun
    Fang Wei-Zheng
    Dai Ning
    JOURNAL OF INFRARED AND MILLIMETER WAVES, 2011, 30 (04) : 293 - 296
  • [3] InSb/InAsSb nanostructures for Mid-IR optoelectronics
    S. V. Ivanov
    V. A. Solov’ev
    A. N. Semenov
    B. Ya. Mel’tser
    S. V. Sorokin
    O. G. Lyublinskaya
    Ya. V. Terent’ev
    A. A. Usikova
    T. V. L’vova
    P. S. Kop’ev
    Bulletin of the Russian Academy of Sciences: Physics, 2007, 71 (1) : 81 - 84
  • [4] Non-cryogenic quantum detection in the mid-IR using InAsSb photovoltaic structures
    Rakovska, A
    Berger, V
    Marcadet, X
    Glastre, C
    Vinter, B
    INFRARED TECHNOLOGY AND APPLICATIONS XXVI, 2000, 4130 : 537 - 546
  • [5] Auger rates in mid-IR InAsSb laser structures
    Hjalmarson, HP
    Kurtz, SR
    NARROW GAP SEMICONDUCTORS 1995, 1995, (144): : 262 - 266
  • [6] Mid-IR resonant cavity detectors
    O'Loughlin, Trevor A.
    Savich, Gregory R.
    Sidor, Daniel E.
    Marozas, Brendan T.
    Golding, Terry D.
    Jamison, Keith D.
    Fredin, Leif
    Fowler, Burt
    Priyantha, Weerasinghe
    Wicks, Gary W.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2017, 35 (02):
  • [7] Growth of InAsSb/InPSb heterojunctions for mid-IR detector applications
    Pitts, O. J.
    Lackner, D.
    Cherng, Y. T.
    Watkins, S. P.
    JOURNAL OF CRYSTAL GROWTH, 2008, 310 (23) : 4858 - 4861
  • [8] Phosphonate monolayers on InAsSb and GaSb surfaces for mid-IR plasmonics
    Bomers, Mario
    Mezy, Aude
    Cerutti, Laurent
    Barho, Franziska
    Flores, Fernando Gonzalez-Posada
    Tournie, Eric
    Taliercio, Thierry
    APPLIED SURFACE SCIENCE, 2018, 451 : 241 - 249
  • [9] Space Mid-IR detectors from DRS
    Hogue, HH
    Guptill, MT
    Reynolds, DB
    Atkins, EW
    Stapelbroek, MG
    IR SPACE TELESCOPES AND INSTRUMENTS, PTS 1 AND 2, 2003, 4850 : 880 - 889
  • [10] Growth of InAsSb/InAs MQWs on GaSb for mid-IR photodetector applications
    Lackner, D.
    Pitts, O. J.
    Najmi, S.
    Sandhu, P.
    Kavanagh, K. L.
    Yang, A.
    Steger, M.
    Thewalt, M. L. W.
    Wang, Y.
    McComb, D. W.
    Bolognesi, C. R.
    Watkins, S. P.
    JOURNAL OF CRYSTAL GROWTH, 2009, 311 (14) : 3563 - 3567