A Configurable Transmitter Architecture for IEEE 802.11ac and 802.11ad Standards

被引:15
|
作者
Gebreyohannes, Fikre Tsigabu [1 ]
Frappe, Antoine [1 ]
Kaiser, Andreas [1 ]
机构
[1] Inst Super Elect & Numer, Inst Elect Microelect & Nanotechnol, Integrated Circuits Design Grp, F-59046 Lille, France
关键词
Digital-analog conversion; finite impulse response (FIR) filters; transmitters; WiGig; 802.11ac; 802.11ad; RF; MODULATOR;
D O I
10.1109/TCSII.2015.2468920
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
IEEE 802.11ac (WiFi) and IEEE 802.11ad (60-GHz WiGig) are emerging gigabit-per-second standards providing complementary services but different nature of signals. The 802.11ac targets high-resolution and narrow-to-medium bandwidth channels, while 802.11ad aims to provide broadband communications with simple modulation schemes. This work proposes a single-physical-layer transmitter baseband architecture for both 11ac and 11ad standards. The core of the proposed transmitter is a configurable mixed-signal digital-to-analog converter (DAC), which has an embedded semidigital filtering tailored for four WiFi modes (20, 40, 80, and 160 MHz) and the 1.76-GHz bandwidth of the 60-GHz WiGig standard. The DAC operates on the oversampled WiFi and raw WiGig data at a common 3.52-GHz clock frequency. System-level simulations of the finite impulse response DAC-based architecture show that the requirements of the standards can be met with maximum hardware sharing and reduced area penalty.
引用
收藏
页码:9 / 13
页数:5
相关论文
共 50 条
  • [1] Reference Design Features IEEE 802.11ac and 802.11ad
    不详
    MICROWAVES & RF, 2013, 52 (02) : 24 - 24
  • [2] WIFI ON STEROIDS: 802.11AC AND 802.11AD
    Verma, Lochan
    Fakharzadeh, Mohammad
    Choi, Sunghyun
    IEEE WIRELESS COMMUNICATIONS, 2013, 20 (06) : 30 - 35
  • [4] IEEE 802.11ac vs 802.11ad for V2X: How Many Frames Can We Aggregate?
    Chattopadhyay, Ananya
    Chandra, Aniruddha
    2022 IEEE 33RD ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS (IEEE PIMRC), 2022, : 913 - 918
  • [5] Software Defined FFT Architecture for IEEE 802.11ac
    Wang, Peng
    McAllister, John
    Wu, Yun
    2013 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2013, : 1246 - 1249
  • [6] Performance Comparison of IEEE 802.11n and IEEE 802.11ac
    Rochim, Adian Fatchur
    Sari, Riri Fitri
    2016 INTERNATIONAL CONFERENCE ON COMPUTER, CONTROL, INFORMATICS, AND ITS APPLICATIONS (IC3INA) - RECENT PROGRESS IN COMPUTER, CONTROL, AND INFORMATICS FOR DATA SCIENCE, 2016, : 54 - 59
  • [7] Testing The Limits Of IEEE 802.11ac
    Faraclas, Elias W.
    MICROWAVES & RF, 2013, 52 (08) : 52 - +
  • [8] IEEE 802.11AC MIMO TRANSMITTER BASEBAND PROCESSING ON CUSTOMIZED VLIW PROCESSOR
    Aghababaeetafreshi, Mona
    Lehtonen, Lasse
    Soleimani, Maliheh
    Valkama, Mikko
    Takala, Jarmo
    2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,
  • [9] Opportunistic Radar in IEEE 802.11ad Networks
    Grossi, Emanuele
    Lops, Marco
    Venturino, Luca
    Zappone, Alessio
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (09) : 2441 - 2454
  • [10] Empirical Investigation of IEEE 802.11ad Network
    Kien Nguyen
    Kibria, Mirza Golam
    Ishizu, Kentaro
    Kojima, Fumihide
    2017 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS (ICC WORKSHOPS), 2017, : 192 - 197