Multi-digit Image Synthesis Using Recurrent Conditional Variational Autoencoder

被引:0
|
作者
Sun, Haoze [1 ]
Xu, Weidi [1 ]
Deng, Chao [1 ]
Tan, Ying [1 ]
机构
[1] Peking Univ, Key Lab Machine Percept MOE, Dept Machine Intelligence, Sch Elect Engn & Comp Sci, Beijing 100871, Peoples R China
基金
北京市自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the field of deep neural networks, several generative methods have been proposed to address the challenges from generative and discriminative tasks, e.g., natural language process, image caption and image generation. In this paper, a conditional recurrent variational autoencoder is proposed for multi-digit image synthesis. This model is capable of generating multi-digit images from the given number sequences and retaining the generalisation ability to recover different types of background. Our method is evaluated on SVHN dataset and the experimental results show it succeeds to generate multi-digit images with various styles according to the given sequential inputs. The generated images can also be easily identified by both human beings and convolutional neural networks for digit classification.
引用
收藏
页码:375 / 380
页数:6
相关论文
共 50 条
  • [1] Conditional Introspective Variational Autoencoder for Image Synthesis
    Zheng, Kun
    Cheng, Yafan
    Kang, Xiaojun
    Yao, Hong
    Tian, Tian
    IEEE ACCESS, 2020, 8 (08): : 153905 - 153913
  • [2] Multi-Digit Recognition using Image Processing and Neural Network
    Shirgaonkar, Anway
    Sahasrabudhe, Neeraj
    Sandikar, Prathamesh
    Sawant, Tapan
    Sayyad, Shahid
    Chaudhari, Archana
    2021 INTERNATIONAL CONFERENCE ON EMERGING SMART COMPUTING AND INFORMATICS (ESCI), 2021, : 207 - 210
  • [3] Conditional Variational Autoencoder for Learned Image Reconstruction
    Zhang, Chen
    Barbano, Riccardo
    Jin, Bangti
    COMPUTATION, 2021, 9 (11)
  • [4] UNSUPERVISED MULTI-SPECTRAL IMAGE SUPER-RESOLUTION BASED ON CONDITIONAL VARIATIONAL AUTOENCODER
    Han, Zhexin
    Zhao, Ning
    Zhang, Haopeng
    Jiang, Zhiguo
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 5127 - 5130
  • [5] Improving Fault Localization Using Conditional Variational Autoencoder
    Fang, Xianmei
    Gao, Xiaobo
    Wang, Yuting
    Liao, Zhouyu
    Ma, Yue
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2022, E105D (08) : 1490 - 1494
  • [6] Multi-digit Logic Operation Using DNA Strand Displacement
    Wang, Zicheng
    Tian, Guihua
    Wang, Yan
    Wang, Yanfeng
    Cui, Guangzhao
    BIO-INSPIRED COMPUTING - THEORIES AND APPLICATIONS, BIC-TA 2014, 2014, 472 : 463 - 467
  • [7] Emotional Response Generation using Conditional Variational Autoencoder
    Lee, Young-Jun
    Choi, Ho-Jin
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (BIGCOMP 2020), 2020, : 553 - 554
  • [8] Botnet Detection Using Recurrent Variational Autoencoder
    Kim, Jeeyung
    Sim, Alex
    Kim, Jinoh
    Wu, Kesheng
    2020 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2020,
  • [9] Multi-digit logic operation using DNA strand displacement
    Cui, Guangzhao (wzch@zzuli.edu.cn), 1600, Springer Verlag (472):
  • [10] Generating multivariate load states using a conditional variational autoencoder
    Wang, Chenguang
    Sharifnia, Ensieh
    Gao, Zhi
    Tindemans, Simon H.
    Palensky, Peter
    ELECTRIC POWER SYSTEMS RESEARCH, 2022, 213