Chaos in the fractional-order conjugate Chen system and its circuit emulation

被引:22
|
作者
Zhang Ruo-Xun [1 ]
Yang Shi-Ping [2 ]
机构
[1] Xingtai Univ, Coll Elementary Educ, Xingtai 054001, Peoples R China
[2] Hebei Normal Univ, Coll Phys, Shijiazhuang 050016, Peoples R China
关键词
fractional-order; conjugate Chen chaotic system; circuit unit; circuit emulation; REALIZATION;
D O I
10.7498/aps.58.2957
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper studies the chaotic behaviors of the fractional-order conjugate Chen system. The necessary condition for the existence of chaotic attractors in the fractional-order conjugate Chen chaotic system is obtained. Furthermore, a new circuit unit is proposed to realize the fractional-order chaotic system. The results between numerical emulation and circuit experimental simulation are in agreement with each other and prove that chaos actually exits in the fractional-order conjugate Chen system.
引用
收藏
页码:2957 / 2962
页数:6
相关论文
共 23 条
  • [1] Chaos in fractional-order autonomous nonlinear systems
    Ahmad, WM
    Sprott, JC
    [J]. CHAOS SOLITONS & FRACTALS, 2003, 16 (02) : 339 - 351
  • [2] On the generalized Lorenz canonical form
    Celikovsky, S
    Chen, GR
    [J]. CHAOS SOLITONS & FRACTALS, 2005, 26 (05) : 1271 - 1276
  • [3] On a generalized Lorenz canonical form of chaotic systems
    Celikovsky, S
    Chen, GR
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (08): : 1789 - 1812
  • [5] Yet another chaotic attractor
    Chen, GR
    Ueta, T
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (07): : 1465 - 1466
  • [6] Chen XR, 2008, CHINESE PHYS B, V17, P1664, DOI 10.1088/1674-1056/17/5/022
  • [7] Study on the fractional-order Liu chaotic system with circuit experiment and its control
    Chen Xiang-Rong
    Liu Chong-Xin
    Wang Fa-Qiang
    Li Yong-Xun
    [J]. ACTA PHYSICA SINICA, 2008, 57 (03) : 1416 - 1422
  • [8] A predictor-corrector approach for the numerical solution of fractional differential equations
    Diethelm, K
    Ford, NJ
    Freed, AD
    [J]. NONLINEAR DYNAMICS, 2002, 29 (1-4) : 3 - 22
  • [9] Gao X, 2005, CHINESE PHYS, V14, P908, DOI 10.1088/1009-1963/14/5/009
  • [10] CHAOS IN A FRACTIONAL ORDER CHUAS SYSTEM
    HARTLEY, TT
    LORENZO, CF
    QAMMER, HK
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1995, 42 (08): : 485 - 490