共 4 条
A New Remote Sensing Method to Estimate River to Ocean DOC Flux in Peatland Dominated Sarawak Coastal Regions, Borneo
被引:11
|作者:
ChunHock, Sim
[1
]
Cherukuru, Nagur
[2
]
Mujahid, Aazani
[3
]
Martin, Patrick
[4
]
Sanwlani, Nivedita
[4
]
Warneke, Thorsten
[5
]
Rixen, Tim
[6
,7
]
Notholt, Justus
[5
]
Muller, Moritz
[1
]
机构:
[1] Swinburne Univ Technol, Fac Engn Comp & Sci, Sarawak 93350, Malaysia
[2] CSIRO Oceans & Atmosphere, Canberra, ACT 2601, Australia
[3] Univ Malaysia Sarawak, Fac Resource Sci & Technol, Sarawak 94300, Malaysia
[4] Nanyang Technol Univ, Asian Sch Environm, Singapore 639798, Singapore
[5] Univ Bremen, Inst Environm Phys, Otto Hahn Allee 1, D-28359 Bremen, Germany
[6] Leibniz Ctr Trop Marine Res, Fahrenheitstr 6, D-28359 Bremen, Germany
[7] Univ Hamburg, Inst Geol, D-20146 Hamburg, Germany
关键词:
DOC flux;
Landsat-8;
TMPA;
tropical coastal waters;
DISSOLVED ORGANIC-MATTER;
LANDSAT;
8;
CDOM ABSORPTION;
RAJANG RIVER;
CARBON;
RAINFALL;
WATERS;
PRECIPITATION;
MODELS;
ESTUARIES;
D O I:
10.3390/rs12203380
中图分类号:
X [环境科学、安全科学];
学科分类号:
08 ;
0830 ;
摘要:
We present a new remote sensing based method to estimate dissolved organic carbon (DOC) flux discharged from rivers into coastal waters off the Sarawak region in Borneo. This method comprises three steps. In the first step, we developed an algorithm for estimating DOC concentrations using the ratio of Landsat-8 Red to Green bands B4/B3 (DOC (mu M C) = 89.86 center dot e(0.27 center dot(B4/B3))), which showed good correlation (R = 0.88) and low mean relative error (+5.71%) between measured and predicted DOC. In the second step, we used TRMM Multisatellite Precipitation Analysis (TMPA) precipitation data to estimate river discharge for the river basins. In the final step, DOC flux for each river catchment was then estimated by combining Landsat-8 derived DOC concentrations and TMPA derived river discharge. The analysis of remote sensing derived DOC flux (April 2013 to December 2018) shows that Sarawak coastal waters off the Rajang river basin, received the highest DOC flux (72% of total) with an average of 168 Gg C per year in our study area, has seasonal variability. The whole of Sarawak represents about 0.1% of the global annual riverine and estuarine DOC flux. The results presented in this study demonstrate the ability to estimate DOC flux using satellite remotely sensed observations.
引用
收藏
页码:1 / 13
页数:13
相关论文