Heat capacity and dielectric properties of multiferroics Bi1-x Gd x FeO3 (x=0-0.20)

被引:14
|
作者
Kallaev, S. N. [1 ,2 ]
Omarov, Z. M. [1 ]
Mitarov, R. G. [3 ]
Bilalov, A. R. [1 ]
Gadzhiev, G. G. [1 ]
Reznichenko, L. A. [4 ]
Ferzilaev, R. M. [1 ]
Sadykov, S. A. [2 ]
机构
[1] Russian Acad Sci, Dagestan Inst Phys Amirkhanov, Dagestan Sci Ctr, Makhachkala 367003, Dagestan, Russia
[2] Dagestan State Univ, Makhachkala 367000, Dagestan, Russia
[3] Dagestan State Tech Univ, Makhachkala 367015, Dagestan, Russia
[4] Southern Fed Univ, Inst Phys Res, Rostov Na Donu 344090, Russia
基金
俄罗斯基础研究基金会;
关键词
Ferrite; Bismuth; Ferroelectric Phase Transition; Excess Heat Capacity; Debye Function;
D O I
10.1134/S106378341407018X
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The heat capacity and the permittivity of multiferroics Bi1 - x Gd (x) FeO3 (x = 0, 0.05, 0.10, 0.15, 0.20) have been studied in the temperature range 130-800 K. It has been found that insignificant substitution of gadolinium for bismuth markedly shifts the temperature of antiferromagnetic phase transition and increases the heat capacity over a wide temperature range. It has been shown that the temperature dependence of the excess heat capacity is due to the manifestation of three-level states. Additional anomalies characteristic of the phase transitions have been revealed in the temperature dependences of the heat capacity for the compositions with x = 0.1 and 0.15 at T a parts per thousand 680 K and T a parts per thousand 430 K, respectively. The results of studies of the heat capacity have been discussed simultaneously with the data of structural studies.
引用
收藏
页码:1412 / 1415
页数:4
相关论文
共 50 条
  • [1] Dielectric properties and specific heat of Bi1-x Sm x FeO3 multiferroics
    Kallaev, S. N.
    Sadykov, S. A.
    Omarov, Z. M.
    Kurbaitaev, A. Ya.
    Reznichenko, L. A.
    Khasbulatov, S. V.
    PHYSICS OF THE SOLID STATE, 2016, 58 (04) : 682 - 684
  • [2] Local states of iron ions in multiferroics Bi1-x La x FeO3
    Pokatilov, V. S.
    Pokatilov, V. V.
    Sigov, A. S.
    PHYSICS OF THE SOLID STATE, 2009, 51 (03) : 552 - 559
  • [3] Magnetic capacitance of the Gd x Bi1-x FeO3 thin films
    Aplesnin, S. S.
    Kretinin, V. V.
    Panasevich, A. M.
    Yanushkevich, K. I.
    PHYSICS OF THE SOLID STATE, 2017, 59 (04) : 667 - 673
  • [4] Magnetic properties of multiferroics Bi1-x Sm x FeO3 synthesized under high pressure
    Makoed, I. I.
    Ravinski, A. F.
    Lazenka, V. V.
    Galyas, A. I.
    Demidenko, O. F.
    Zhivul'ko, A. M.
    Yanushkevich, K. I.
    Moshchalkov, V. V.
    PHYSICS OF THE SOLID STATE, 2017, 59 (08) : 1536 - 1542
  • [5] Heat capacity and dielectric properties of multiferroics Bi1 − xGdxFeO3 (x = 0–0.20)
    S. N. Kallaev
    Z. M. Omarov
    R. G. Mitarov
    A. R. Bilalov
    G. G. Gadzhiev
    L. A. Reznichenko
    R. M. Ferzilaev
    S. A. Sadykov
    Physics of the Solid State, 2014, 56 : 1412 - 1415
  • [6] Synthesis, and study of magnetic properties, of Bi1-x Cd x FeO3
    Bellakki, M. B.
    Manivannan, V.
    JOURNAL OF MATERIALS SCIENCE, 2010, 45 (04) : 1137 - 1142
  • [7] Heat Transfer Processes in Multiferroics Bi1- xHoxFeO3 (x=0-0.20)
    Kallaev, S. N.
    Bakmaev, A. G.
    Reznichenko, L. A.
    PHYSICS OF THE SOLID STATE, 2020, 62 (05) : 865 - 868
  • [8] Phase composition, microstructure, and thermophysical and dielectric properties of multiferroic Bi1-x Dy x FeO3
    Khasbulatov, S. V.
    Pavelko, A. A.
    Shilkina, L. A.
    Reznichenko, L. A.
    Gadjiev, G. G.
    Bakmaev, A. G.
    Magomedov, M-R. M.
    Omarov, Z. M.
    Aleshin, V. A.
    THERMOPHYSICS AND AEROMECHANICS, 2016, 23 (03) : 445 - 450
  • [9] Sol-gel synthesis, characterization and dielectric properties of Bi1-x La x FeO3
    Feng, Zhijie
    He, Zhuo
    Liu, Bangxu
    He, Yanyan
    Lv, Chao
    He, Hua
    Xu, Yebin
    JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, 2015, 75 (01) : 134 - 140
  • [10] Mossbauer studies of multiferroics BiFe1-x Cr x O3 (x=0-0.20)
    Pokatilov, V. S.
    Rusakov, V. S.
    Sigov, A. S.
    Belik, A. A.
    PHYSICS OF THE SOLID STATE, 2017, 59 (08) : 1558 - 1564