Robust nonparallel support vector machines via second-order cone programming

被引:22
|
作者
Lopez, Julio [1 ]
Maldonado, Sebastian [2 ]
Carrasco, Miguel [2 ]
机构
[1] Univ Diego Portales, Fac Ingn & Ciencias, Avda Ejercito 441, Santiago, Chile
[2] Univ Andes, Fac Ingn & Ciencias Aplicadas, Monsenor Alvaro del Portillo Las Condes 12455, Santiago, Chile
关键词
Support vector machines; Twin support vector machines; Nonparallel support vector machines; Second-order cone programming; Robustness; CLASSIFICATION; OPTIMIZATION; REGRESSION;
D O I
10.1016/j.neucom.2019.07.072
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A novel binary classification approach is proposed in this paper, extending the ideas behind nonparallel support vector machine (NPSVM) to robust machine learning. NPSVM constructs two twin hyperplanes by solving two independent quadratic programming problems and generalizes the well-known twin support vector machine (TWSVM) method. Robustness is conferred on the NPSVM approach by using a probabilistic framework for maximizing model fit, which is cast into two second-order cone programming (SOCP) problems by assuming a worst-case setting for the data distribution of the training patterns. Experiments on benchmark datasets confirmed the theoretical virtues of our approach, showing superior average performance compared with various SVM formulations. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:227 / 238
页数:12
相关论文
共 50 条
  • [1] Robust kernel-based multiclass support vector machines via second-order cone programming
    Maldonado, Sebastian
    Lopez, Julio
    APPLIED INTELLIGENCE, 2017, 46 (04) : 983 - 992
  • [2] Robust kernel-based multiclass support vector machines via second-order cone programming
    Sebastián Maldonado
    Julio López
    Applied Intelligence, 2017, 46 : 983 - 992
  • [3] A second-order cone programming formulation for nonparallel hyperplane support vector machine
    Carrasco, Miguel
    Lopez, Julio
    Maldonado, Sebastian
    EXPERT SYSTEMS WITH APPLICATIONS, 2016, 54 : 95 - 104
  • [4] Robust twin support vector regression via second-order cone programming
    Lopez, Julio
    Maldonado, Sebastian
    KNOWLEDGE-BASED SYSTEMS, 2018, 152 : 83 - 93
  • [5] A second-order cone programming formulation for twin support vector machines
    Maldonado, Sebastian
    Lopez, Julio
    Carrasco, Miguel
    APPLIED INTELLIGENCE, 2016, 45 (02) : 265 - 276
  • [6] Quantum algorithms for Second-Order Cone Programming and Support Vector Machines
    Kerenidis, Iordanis
    Prakash, Anupam
    Szilagyi, Daniel
    QUANTUM, 2021, 5
  • [7] Robust feature selection for multiclass Support Vector Machines using second-order cone programming
    Lopez, Julio
    Maldonado, Sebastian
    INTELLIGENT DATA ANALYSIS, 2015, 19 : S117 - S133
  • [8] A second-order cone programming formulation for twin support vector machines
    Sebastián Maldonado
    Julio López
    Miguel Carrasco
    Applied Intelligence, 2016, 45 : 265 - 276
  • [9] Multi-class second-order cone programming support vector machines
    Lopez, Julio
    Maldonado, Sebastian
    INFORMATION SCIENCES, 2016, 330 : 328 - 341
  • [10] Imbalanced data classification using second-order cone programming support vector machines
    Maldonado, Sebastian
    Lopez, Julio
    PATTERN RECOGNITION, 2014, 47 (05) : 2070 - 2079